Ota Toru, Furutani Yuji, Terakita Akihisa, Shichida Yoshinori, Kandori Hideki
Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Biochemistry. 2006 Mar 7;45(9):2845-51. doi: 10.1021/bi051937l.
Low-temperature Fourier transform infrared (FTIR) spectroscopy is used to study squid rhodopsin at 77 K in investigating structural changes in the Schiff base region upon photoisomerization. The analysis of O-D stretching vibrations in D(2)O revealed that there are more internal water molecules near the retinal chromophore in squid rhodopsin than in bovine rhodopsin. Among nine O-D stretching vibrations of water in squid rhodopsin, eight peaks are identical between rhodopsin and 9-cis-rhodopsin (Iso). On the other hand, the isomer-specific O-D stretch of water was observed for rhodopsin (2451 cm(-)(1)) and Iso (2382 cm(-)(1)). Low frequencies of these bands suggest that the water forms a strong hydrogen bond with a negatively charged counterion. In addition, it was suggested that the hydrogen bond of the Schiff base is weaker in squid rhodopsin than in bacteriorhodopsin and bovine rhodopsin, and squid rhodopsin possessed similar hydrogen bonding strength for the Schiff base among rhodopsin, Iso, and bathorhodopsin. Most vibrational bands in the X-D stretch region originate from water O-D or the Schiff base N-D stretches, suggesting that the hydrogen bonding network in the Schiff base region of squid rhodopsin is composed of only water molecules. On the basis of these results, we propose that squid rhodopsin possesses a "bridge" water between the Schiff base and its counterion as well as squid retinochrome [Furutani, Y., Terakita, A., Shichida, Y., and Kandori, H. (2005) Biochemistry 44, 7988-7997], which is absent in vertebrate rhodopsin [Furutani, Y., Shichida, Y., and Kandori, H. (2003) Biochemistry 42, 9619-9625].
低温傅里叶变换红外(FTIR)光谱用于在77K下研究鱿鱼视紫红质,以调查光异构化时席夫碱区域的结构变化。对D₂O中O-D伸缩振动的分析表明,鱿鱼视紫红质中视网膜发色团附近的内部水分子比牛视紫红质中的更多。在鱿鱼视紫红质中水的九个O-D伸缩振动中,视紫红质和9-顺式视紫红质(Iso)之间有八个峰相同。另一方面,观察到视紫红质(2451 cm⁻¹)和Iso(2382 cm⁻¹)的水的异构体特异性O-D伸缩。这些谱带的低频表明水与带负电荷的抗衡离子形成了强氢键。此外,有人提出鱿鱼视紫红质中席夫碱的氢键比细菌视紫红质和牛视紫红质中的弱,并且鱿鱼视紫红质在视紫红质、Iso和视紫红质中间体中席夫碱具有相似的氢键强度。X-D伸缩区域中的大多数振动谱带源自水O-D或席夫碱N-D伸缩,这表明鱿鱼视紫红质席夫碱区域中的氢键网络仅由水分子组成。基于这些结果,我们提出鱿鱼视紫红质在席夫碱及其抗衡离子之间拥有一个“桥连”水,就像鱿鱼视黄醛色素一样[古谷洋、寺北昭、七田洋、神鸟博(2005年)《生物化学》44卷,7988 - 7997页],而脊椎动物视紫红质中不存在这种水[古谷洋、七田洋、神鸟博(2003年)《生物化学》42卷,9619 - 9625页]。