1Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan.
2The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585 Japan.
Commun Biol. 2019 May 13;2:180. doi: 10.1038/s42003-019-0409-3. eCollection 2019.
Animals sense light using photosensitive proteins-rhodopsins-containing a chromophore-retinal-that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue-counterion-for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181-SB interaction. We also suggest that upon light activation, the Glu181-SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception.
动物利用含有发色团视紫红质的感光蛋白来感知光线,发色团视紫红质内在地吸收紫外线。可见光敏感性主要取决于视黄醛亚胺(SB)的质子化,这需要带负电荷的氨基酸残基-抗衡离子来稳定。对于各种视紫红质中最常见的抗衡离子Glu181 的功能,我们知之甚少。在这里,我们证明在蜘蛛视觉视紫红质中,与昼夜节律相关的哺乳动物黑素视蛋白的同源物中,Glu181 抗衡离子可能通过形成氢键网络起作用,其中 Ser186 是 Glu181-SB 相互作用的关键介导物。我们还表明,在光激活后,Glu181-SB 相互作用会重新排列,而 Ser186 会改变其贡献。这与脊椎动物视觉视紫红质的抗衡离子 Glu113 的功能形成对比,Glu113 与 SB 形成盐桥。我们的结果阐明了与无脊椎动物视觉和脊椎动物非视觉光感受器相关的可见光敏感性的分子机制。