Dell'Acqua Mark L, Smith Karen E, Gorski Jessica A, Horne Eric A, Gibson Emily S, Gomez Lisa L
Department of Pharmacology, University of Colorado at Denver and Health Sciences Center at Fitzsimons, P.O. Box 6511, Mail Stop 8303, Aurora, CO 80045-0508, USA.
Eur J Cell Biol. 2006 Jul;85(7):627-33. doi: 10.1016/j.ejcb.2006.01.010. Epub 2006 Feb 28.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.
信号通路组织的核心是支架蛋白、锚定蛋白和衔接蛋白,它们介导包含受体、第二信使生成酶、激酶、磷酸酶和底物的多蛋白复合物的局部组装。在兴奋性突触的突触后致密区(PSD),AMPA(AMPA受体)和NMDA(NMDA受体)谷氨酸受体通过一个支架蛋白网络与信号蛋白、肌动蛋白细胞骨架以及树突棘上的突触粘附分子相连,该网络可能在调节学习和记忆所依赖的突触可塑性中的突触结构和受体功能方面发挥重要作用。在长时程增强(LTP)诱导过程中,AMPA受体通过NMDA受体激活被快速招募到树突棘,其途径还会增加树突棘的大小和F-肌动蛋白含量。cAMP依赖性蛋白激酶(PKA)对AMPA受体-GluR1亚基的磷酸化有助于稳定LTP期间招募的AMPA受体。相反,长时程抑制(LTD)的诱导导致钙调神经磷酸酶-蛋白磷酸酶2B(CaN)介导的PKA磷酸化的GluR1受体去磷酸化、AMPA受体从突触的内吞移除以及树突棘大小的减小。然而,PKA和CaN协同调节AMPA受体定位、磷酸化和突触结构的机制尚不清楚。一种激酶锚定蛋白(AKAP)79/150是一种PKA和CaN锚定蛋白,它通过PSD-95和SAP97膜相关鸟苷酸激酶(MAGUK)支架与NMDA受体和AMPA受体相连。重要的是,神经元中PKA锚定的破坏以及异源细胞中GluR1-MAGUK-AKAP79复合物的功能分析表明,AKAP79/150锚定的PKA和CaN可能在LTD中调节AMPA受体。在“第一届锚定cAMP信号通路国际会议”(德国柏林-布赫,2005年10月15 - 16日)上发表的研究中,我们证明AKAP79/150通过一个结合磷脂酰肌醇-4,5-二磷酸(PIP(2))、F-肌动蛋白和肌动蛋白连接的钙粘蛋白粘附分子的N端碱性区域靶向到树突棘。因此,PKA和CaN 的锚定以及AKAP与钙粘蛋白-细胞骨架和MAGUK-受体复合物的物理连接可能在协调可塑性所依赖的突触结构和受体信号功能的变化中发挥作用。重要的是,我们提供的证据表明,LTD期间参与AMPA受体调节的NMDA受体-CaN信号通路会导致AKAP79/150与肌动蛋白、MAGUK和钙粘蛋白的相互作用破坏,并导致突触后AKAP和锚定的PKA丢失。我们目前的研究表明,这种AKAP79/150易位取决于CaN的激活、F-肌动蛋白重组以及可能的Ca(2+)-CaM与N端碱性区域的结合。重要的是,AKAP79/150-PKA复合物从树突棘的这种易位可能会改变突触后PKA激酶和CaN/PP1磷酸酶活性的平衡,有利于磷酸酶。PKA的这种丢失然后可能在LTD诱导过程中促进CaN和PP1的作用,包括维持AMPA受体去磷酸化、促进AMPA受体内吞以及防止AMPA受体循环利用。总体而言,这些发现挑战了AKAP是将信号蛋白定位在固定靶底物附近的静态锚定物这一公认概念,相反表明AKAP可以以更动态的方式发挥作用来调节局部信号事件。