Moore H, Dehnad M, Freelin A, Granger B, Subramanian S, Kulkarni A, Berto S, Lega B C, Konopka G
Department of Neuroscience and Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
bioRxiv. 2025 Jun 25:2025.06.25.661589. doi: 10.1101/2025.06.25.661589.
Deep brain stimulation of the temporal cortex can enhance learning and memory in the face of cognitive impairment. Despite the potential of such therapies, the neural and genetic mechanisms underlying the effect of stimulation on human brain circuits are not understood. To explicate direct mechanisms of neural modulation elicited by brain stimulation, we developed an approach utilizing microelectrode array stimulation and recording of resected temporal cortex from neurosurgical patients. We find that stimulation preferentially increases firing rates in pyramidal cells compared to interneurons and also strengthens cell assemblies. Using single cell multiomics, we link the observed physiological changes to cell type-specific gene expression patterns. We detail gene regulatory networks that indicate preferential involvement of specific excitatory neuron subtypes and the response of non-neurons. We conclude that the overall impact of stimulation on the human temporal cortex is activation of specific excitatory neurons and enhanced cell assembly activity, and that these changes are supported by gene networks involving immediate early, synaptic, and ion channel genes. Our findings establish a foundation to identify targetable cell type-specific genetic signatures that may be harnessed for therapeutic benefit in future neuromodulation strategies.
对颞叶皮质进行深部脑刺激可以在面对认知障碍时增强学习和记忆。尽管此类疗法具有潜力,但刺激对人类脑回路产生影响的神经和遗传机制尚不清楚。为了阐明脑刺激引发的神经调节的直接机制,我们开发了一种方法,利用微电极阵列对神经外科患者切除的颞叶皮质进行刺激和记录。我们发现,与中间神经元相比,刺激优先提高锥体细胞的放电率,并且还增强了细胞集群。使用单细胞多组学技术,我们将观察到的生理变化与细胞类型特异性基因表达模式联系起来。我们详细阐述了基因调控网络,这些网络表明特定兴奋性神经元亚型的优先参与以及非神经元的反应。我们得出结论,刺激对人类颞叶皮质的总体影响是特定兴奋性神经元的激活和细胞集群活动的增强,并且这些变化由涉及立即早期、突触和离子通道基因的基因网络支持。我们的发现为识别可靶向的细胞类型特异性遗传特征奠定了基础,这些特征可能在未来的神经调节策略中用于治疗益处。