Suppr超能文献

通过全细胞电流记录研究肾近端小管细胞中的钠-丙氨酸共转运。

Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording.

作者信息

Hoyer J, Gögelein H

机构信息

Max-Planck-Institut für Biophysik, Frankfurt a.M., Germany.

出版信息

J Gen Physiol. 1991 May;97(5):1073-94. doi: 10.1085/jgp.97.5.1073.

Abstract

Sodium-alanine cotransport was investigated in single isolated proximal tubule cells from rabbit kidney with the whole-cell current recording technique. Addition of L-alanine at the extracellular side induced an inward-directed sodium current and a cell depolarization. The sodium-alanine cotransport current was stereospecific and sodium dependent. Competition experiments suggested a common cotransport system for L-alanine and L-phenylalanine. Sodium-alanine cotransport current followed simple Michaelis-Menten kinetics, with an apparent Km of 6.6 mM alanine and 11.6 mM sodium and a maximal cotransport current of 0.98 pA/pF at -60 mV clamp potential. Hill plots of cotransport current suggested a potential-independent coupling ratio of one sodium and one alanine. The apparent Km for sodium and the maximal cotransport current were potential dependent, whereas the apparent Km for L-alanine was not affected by transmembrane potential. The increase in Km for alanine with decreasing inward-directed sodium gradients suggested a simultaneous transport mechanism. These results are consistent with a cotransport model with potential-dependent binding or unbinding of sodium (high-field access channel) and a potential-dependent translocation step.

摘要

采用全细胞电流记录技术,对来自兔肾的单个分离近端小管细胞中的钠-丙氨酸共转运进行了研究。在细胞外侧添加L-丙氨酸可诱导内向钠电流和细胞去极化。钠-丙氨酸共转运电流具有立体特异性且依赖于钠。竞争实验表明L-丙氨酸和L-苯丙氨酸存在共同的共转运系统。钠-丙氨酸共转运电流遵循简单的米氏动力学,在-60 mV钳制电位下,L-丙氨酸的表观Km为6.6 mM,钠的表观Km为11.6 mM,最大共转运电流为0.98 pA/pF。共转运电流的希尔图表明钠和丙氨酸的电位无关偶联比为1。钠的表观Km和最大共转运电流依赖于电位,而L-丙氨酸的表观Km不受跨膜电位的影响。随着内向钠梯度降低,丙氨酸的Km增加,提示存在同时转运机制。这些结果与钠(高场通路通道)的电位依赖性结合或解离以及电位依赖性转运步骤的共转运模型一致。

相似文献

4
Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation.
Am J Physiol. 1998 Sep;275(3):G483-9. doi: 10.1152/ajpgi.1998.275.3.G483.
8
12-HETE modulates Na-coupled uptakes in proximal tubular cells: role of diacylglycerol kinase inhibition.
Am J Physiol. 1990 Nov;259(5 Pt 2):F816-22. doi: 10.1152/ajprenal.1990.259.5.F816.
9
Amino acid specificity of the Na+/alanine cotransporter in pancreatic acinar cells.
Biochim Biophys Acta. 1989 Apr 28;980(3):385-8. doi: 10.1016/0005-2736(89)90330-1.
10
A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells.
Am J Physiol. 1996 Jan;270(1 Pt 1):C49-56. doi: 10.1152/ajpcell.1996.270.1.C49.

引用本文的文献

1
Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake.
PLoS One. 2014 Jun 5;9(6):e98469. doi: 10.1371/journal.pone.0098469. eCollection 2014.
2
Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase.
Am J Physiol Cell Physiol. 2010 Jun;298(6):C1376-87. doi: 10.1152/ajpcell.00408.2009. Epub 2010 Mar 17.
3
Mechanism and putative structure of B(0)-like neutral amino acid transporters.
J Membr Biol. 2006;213(2):111-8. doi: 10.1007/s00232-006-0879-3. Epub 2007 Apr 6.
4
The molecular basis of neutral aminoacidurias.
Pflugers Arch. 2006 Jan;451(4):511-7. doi: 10.1007/s00424-005-1481-8. Epub 2005 Jul 29.
5
Characterization of mouse amino acid transporter B0AT1 (slc6a19).
Biochem J. 2005 Aug 1;389(Pt 3):745-51. doi: 10.1042/BJ20050083.
8
Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies.
J Membr Biol. 1992 Jan;125(1):49-62. doi: 10.1007/BF00235797.

本文引用的文献

1
[METHODS FOR PERFUSING SINGLE NEPHRON SEGMENTS].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jan 30;278:669-74.
2
IONIC REQUIREMENTS FOR AMINO ACID TRANSPORT IN THE RAT KIDNEY CORTEX SLICE. I. INFLUENCE OF EXTRACELLULAR IONS.
Biochim Biophys Acta. 1964 Jan 27;79:167-76. doi: 10.1016/0926-6577(64)90049-x.
3
Amino acid content of rabbit urine and plasma.
Arch Biochem Biophys. 1962 Mar;96:557-61. doi: 10.1016/0003-9861(62)90336-3.
4
The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.
Biochim Biophys Acta. 1980 Jun 20;599(1):191-201. doi: 10.1016/0005-2736(80)90067-x.
5
The mechanism of Na+-dependent D-glucose transport.
J Biol Chem. 1980 May 25;255(10):4453-62.
6
Kinetic analysis of a family of cotransport models.
Biochim Biophys Acta. 1981 Dec 7;649(2):269-80. doi: 10.1016/0005-2736(81)90415-6.
7
Intracellular potentials in rabbit proximal tubules perfused in vitro.
Am J Physiol. 1981 Mar;240(3):F200-10. doi: 10.1152/ajprenal.1981.240.3.F200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验