Guleryuz Onur G
DoCoMo Communications Laboratories USA, Inc., San Jose, CA 95110, USA.
IEEE Trans Image Process. 2006 Mar;15(3):539-54. doi: 10.1109/tip.2005.863057.
We study the robust estimation of missing regions in images and video using adaptive, sparse reconstructions. Our primary application is on missing regions of pixels containing textures, edges, and other image features that are not readily handled by prevalent estimation and recovery algorithms. We assume that we are given a linear transform that is expected to provide sparse decompositions over missing regions such that a portion of the transform coefficients over missing regions are zero or close to zero. We adaptively determine these small magnitude coefficients through thresholding, establish sparsity constraints, and estimate missing regions in images using information surrounding these regions. Unlike prevalent algorithms, our approach does not necessitate any complex preconditioning, segmentation, or edge detection steps, and it can be written as a sequence of denoising operations. We show that the region types we can effectively estimate in a mean-squared error sense are those for which the given transform provides a close approximation using sparse nonlinear approximants. We show the nature of the constructed estimators and how these estimators relate to the utilized transform and its sparsity over regions of interest. The developed estimation framework is general, and can readily be applied to other nonstationary signals with a suitable choice of linear transforms. Part I discusses fundamental issues, and Part II is devoted to adaptive algorithms with extensive simulation examples that demonstrate the power of the proposed techniques.
我们使用自适应稀疏重建方法研究图像和视频中缺失区域的鲁棒估计。我们的主要应用是针对包含纹理、边缘和其他图像特征的像素缺失区域,这些区域难以用现有的估计和恢复算法处理。我们假设给定一个线性变换,期望它能在缺失区域提供稀疏分解,使得缺失区域上的一部分变换系数为零或接近零。我们通过阈值化自适应地确定这些小幅度系数,建立稀疏性约束,并利用这些区域周围的信息估计图像中的缺失区域。与现有算法不同,我们的方法不需要任何复杂的预处理、分割或边缘检测步骤,并且可以写成一系列去噪操作。我们表明,在均方误差意义上我们能够有效估计的区域类型,是那些给定变换使用稀疏非线性逼近能提供近似结果的区域。我们展示了所构建估计器的性质,以及这些估计器如何与所使用的变换及其在感兴趣区域的稀疏性相关。所开发的估计框架具有通用性,通过适当选择线性变换可以很容易地应用于其他非平稳信号。第一部分讨论基本问题,第二部分致力于自适应算法,并给出大量仿真示例以展示所提技术的强大之处。