Suppr超能文献

基于非线性感知模型的自然图像正则化算子

Regularization operators for natural images based on nonlinear perception models.

作者信息

Gutiérrez Juan, Ferri Francesc J, Malo Jesús

机构信息

Department d'Informàtica and the VISTA Laboratory, Universitat de València, 50. 46100 Burjassot,València, Spain.

出版信息

IEEE Trans Image Process. 2006 Jan;15(1):189-200. doi: 10.1109/tip.2005.860345.

Abstract

Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.

摘要

图像恢复需要一些关于解的先验知识。一些传统的正则化技术是基于功率谱密度的估计。用于谱估计的简单统计模型仅考虑图像像素之间的二阶关系。然而,自然图像呈现出其他特征,例如局部傅里叶或小波变换系数之间的特定关系。生物视觉系统已经进化到能够捕捉这些关系。我们建议利用这种生物行为来构建正则化算子,作为简单统计模型的替代方案。结果表明,如果惩罚算子考虑到自然图像中的这些额外特征,它将更加稳健,并且正则化参数的选择也不那么关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验