Walker F Ann, Licoccia Silvia, Paolesse Roberto
Department of Chemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
J Inorg Biochem. 2006 Apr;100(4):810-37. doi: 10.1016/j.jinorgbio.2006.01.038. Epub 2006 Mar 7.
The structures, electron configurations, magnetic susceptibilities, spectroscopic properties, molecular orbital energies and spin density distributions, redox properties and reactivities of iron corrolates having chloride, phenyl, pyridine, NO and other ligands are reviewed. It is shown that with one very strong donor ligand such as phenyl anion the electron configuration of the metal is d(4)S=1 Fe(IV) coordinated to a (corrolate)(3-) anion, while with one weaker donor ligand such as chloride or other halide, the electron configuration is d(5)S=3/2 Fe(III) coordinated to a (corrolate)(2-.) pi-cation radical, with antiferromagnetic coupling between the metal and corrolate radical electron. Many of these complexes have been studied by electrochemical techniques and have rich redox reactivity, in most cases involving two 1-electron oxidations and two 1-electron reductions, and it is not possible to tell, from the shapes of cyclic voltammetric waves, whether the electron is added or removed from the metal or the macrocycle; often infrared, UV-Vis, or EPR spectroscopy can provide this information. (1)H and (13)C NMR spectroscopic methods are most useful in delineating the spin state and pattern of spin density distribution of the complexes listed above, as would also be expected to be the case for the recently-reported formal Fe(V)O corrolate, if this complex were stable enough for characterization by NMR spectroscopy. Iron, manganese and chromium corrolates can be oxidized by iodosylbenzene and other common oxidants used previously with metalloporphyrinates to effect efficient oxidation of substrates. Whether the "resting state" form of these complexes, most generally in the case of iron [FeCl(Corr)], actually has the electron configuration Fe(IV)(Corr)(3-) or Fe(III)(Corr)(2-.) is not relevant to the high-valent reactivity of the complex.
本文综述了含氯、苯基、吡啶、NO及其他配体的铁卟啉配合物的结构、电子构型、磁化率、光谱性质、分子轨道能量和自旋密度分布、氧化还原性质及反应活性。结果表明,对于具有一个很强供体配体(如苯基阴离子)的情况,金属的电子构型为d(4)S = 1的Fe(IV),其与一个(corrolate)(3-)阴离子配位;而对于具有一个较弱供体配体(如氯或其他卤化物)的情况,电子构型为d(5)S = 3/2的Fe(III),其与一个(corrolate)(2-.)π-阳离子自由基配位,金属与corrolate自由基电子之间存在反铁磁耦合。许多这类配合物已通过电化学技术进行了研究,并且具有丰富的氧化还原反应活性,在大多数情况下涉及两个单电子氧化和两个单电子还原,从循环伏安波的形状无法判断电子是从金属还是大环上添加或移除;通常红外、紫外可见或电子顺磁共振光谱可以提供此信息。(1)H和(13)C NMR光谱方法在描绘上述配合物的自旋态和自旋密度分布模式方面最为有用,对于最近报道的形式上的Fe(V)O卟啉配合物,如果该配合物足够稳定以便通过NMR光谱进行表征,情况也应如此。铁、锰和铬的卟啉配合物可以被亚碘酰苯和其他先前用于金属卟啉以实现底物有效氧化的常见氧化剂氧化。这些配合物的“静止态”形式(最常见的是铁的[FeCl(Corr)])实际上具有电子构型Fe(IV)(Corr)(3-)还是Fe(III)(Corr)(2-.),与该配合物的高价反应活性无关。