Ye Shengfa, Tuttle Tell, Bill Eckhard, Simkhovich Liliya, Gross Zeev, Thiel Walter, Neese Frank
Lehrstuhl für Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany.
Chemistry. 2008;14(34):10839-51. doi: 10.1002/chem.200801265.
There is a longstanding debate in the literature on the electronic structure of chloroiron corroles, especially for those containing the highly electron-withdrawing meso-tris(pentafluorophenyl)corrole (TPFC) ligand. Two alternative electronic structures were proposed for this and the related [FeCl(tdcc)] (TDCC=meso-tris(2,6-dichlorophenyl)corrole) complex, namely a high-valent ferryl species chelated by a trianionic corrolato ligand (Fe(IV)(Cor)(3-)) or an intermediate-spin (IS) ferric ion that is antiferromagnetically coupled to a dianionic pi-radical corrole (Fe(III)(Cor)(.2-)) yielding an overall triplet ground state. Two series of corrole-based iron complexes ([Fe(L)(Cor)], in which L=F, Cl, Br, I, and Cor=TPFC, TDCC) have been investigated by a combined experimental (Mössbauer spectroscopy) and computational (DFT) approach in order to differentiate between the two possible electronic-structure descriptions. The experimentally calibrated conclusions were reached by a detailed analysis of the Kohn-Sham solutions, which successfully reproduce the experimental structures and spectroscopic parameters: the electronic structures of [Fe(L)(Cor)] (L=F, Cl, Br, I, Cor=TPFC, TDCC) are best formulated as (IS-Fe(III)(Cor)(.2-)), similar to chloroiron corrole complexes containing electron-rich corrole ligands. The antiferromagnetic pathway is composed of singly occupied Fe d(z(2) ) and corrole a(2u)-like pi orbitals, with coupling constants that exceed those of analogous porphyrin systems by a factor of 2-3. In the corroles, the combination of lower symmetry, extra negative charge, and smaller cavity size (relative to the porphyrins) leads to exceptionally strong iron-corrole sigma bonds. Hence, the Fe d(x(2)-y(2) )-based molecular orbital is unavailable in the corrole complexes (contrary to the porphyrin case), and the local spin states are S(Fe)=3/2 in the corroles versus S(Fe)=5/2 in the porphyrins. The consequences of this qualitative difference are discussed for spin distributions and magnetic properties.
关于氯铁卟啉配合物的电子结构,尤其是含有强吸电子的中位三(五氟苯基)卟啉(TPFC)配体的配合物,文献中存在长期的争论。针对此配合物及相关的[FeCl(tdcc)](TDCC = 中位三(2,6 - 二氯苯基)卟啉)配合物,提出了两种不同的电子结构,即由三价阴离子卟啉配体螯合的高价铁酰基物种(Fe(IV)(Cor)(3 - )),或与二价阴离子π - 自由基卟啉反铁磁耦合的中间自旋(IS)铁离子(Fe(III)(Cor)(.2 - )),产生一个整体的三重基态。为了区分这两种可能的电子结构描述,通过结合实验(穆斯堡尔光谱)和计算(密度泛函理论,DFT)方法研究了两个系列的基于卟啉的铁配合物([Fe(L)(Cor)],其中L = F、Cl、Br、I,Cor = TPFC、TDCC)。通过对Kohn - Sham解的详细分析得出了经过实验校准的结论,该分析成功地再现了实验结构和光谱参数:[Fe(L)(Cor)](L = F、Cl、Br、I,Cor = TPFC、TDCC)的电子结构最好表述为(IS - Fe(III)(Cor)(.2 - )),类似于含有富电子卟啉配体的氯铁卟啉配合物。反铁磁途径由单占据的Fe d(z(2))和类似卟啉a(2u)的π轨道组成,其耦合常数比类似的卟啉体系高出2 - 3倍。在卟啉中,较低的对称性、额外的负电荷和较小的空腔尺寸(相对于卟啉)的组合导致铁 - 卟啉σ键异常强。因此,基于Fe d(x(2)-y(2))的分子轨道在卟啉配合物中不可用(与卟啉情况相反),并且卟啉中的局部自旋态为S(Fe)=3/2,而卟啉中的为S(Fe)=5/2。讨论了这种定性差异对自旋分布和磁性的影响。