Morgan-Kiss Rachael M, Priscu John C, Pocock Tessa, Gudynaite-Savitch Loreta, Huner Norman P A
Graduate College of Marine Studies and Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
Microbiol Mol Biol Rev. 2006 Mar;70(1):222-52. doi: 10.1128/MMBR.70.1.222-252.2006.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.
持续寒冷的环境构成了全球最大的生态系统之一,微生物在这些极端环境中主导着生物量和代谢活动。对于依赖有机碳和能源的光合自养生产的生物而言,低温对生命的压力会加剧。光合生物必须将光吸收和光化学的温度无关反应与电子传递以及通过生长和代谢利用能源的温度相关过程进行协调。尽管存在这一难题,但光合微生物在所有已描述的寒冷生态系统中都很繁盛,并(与化能自养生物一起)构成了低温食物网中自养生产的基础。嗜冷(需要低温生长的生物)和耐冷(耐受低温生长的生物)光合自养生物依赖于已在其他适应低温的异养生物中描述过的低温适应性和适应策略,例如冷活性蛋白和维持膜流动性。此外,光合自养生物拥有其他策略,以在低温下平衡光的吸收以及光能向储存的化学能产物(NADPH和ATP)的转换与光合衍生能量产物的下游消耗。最后,与暴露于高光和高紫外线的光合生物群落相比,生活在持续低光照环境的低温环境中的光合微生物存在不同的适应和适应性机制。