Baker Melinda D, Wolanin Peter M, Stock Jeffry B
Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.
Curr Opin Microbiol. 2006 Apr;9(2):187-92. doi: 10.1016/j.mib.2006.02.007. Epub 2006 Mar 9.
Motile bacteria regulate chemotaxis through a highly conserved chemosensory signal-transduction system. System-wide analyses and mathematical modeling are facilitated by extensive experimental observations regarding bacterial chemotaxis proteins, including biochemical parameters, protein structures and protein-protein interaction maps. Thousands of signaling and regulatory chemotaxis proteins within a bacteria cell form a highly interconnected network through distinct protein-protein interactions. A bacterial cell is able to respond to multiple stimuli through a collection of chemoreceptors with different sensory modalities, which interact to affect the cooperativity and sensitivity of the chemotaxis response. The robustness or insensitivity of the chemotaxis system to perturbations in biochemical parameters is a product of the system's hierarchical network architecture.
运动性细菌通过高度保守的化学感应信号转导系统来调节趋化作用。关于细菌趋化作用蛋白的广泛实验观察,包括生化参数、蛋白质结构和蛋白质 - 蛋白质相互作用图谱,促进了全系统分析和数学建模。细菌细胞内数千种信号传导和调节趋化作用蛋白通过独特的蛋白质 - 蛋白质相互作用形成高度互联的网络。细菌细胞能够通过一组具有不同传感模式的化学感受器对多种刺激做出反应,这些化学感受器相互作用以影响趋化反应的协同性和敏感性。趋化系统对生化参数扰动的稳健性或不敏感性是该系统分层网络架构的产物。