Suppr超能文献

通过自由能模拟研究短杆菌肽A中离子渗透、排斥、结合和阻断的能量学。

Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations.

作者信息

Baştuğ Turgut, Kuyucak Serdar

机构信息

School of Physics, University of Sydney, Sydney, Australia.

出版信息

Biophys J. 2006 Jun 1;90(11):3941-50. doi: 10.1529/biophysj.105.074633. Epub 2006 Mar 13.

Abstract

The rigid force fields currently used in molecular dynamics (MD) simulations of biomolecules are optimized for globular proteins. Whether they can also be used in MD simulations of membrane proteins is an important issue that needs to be resolved. Here we address this issue using the gramicidin A channel, which provides an ideal test case because of the simplicity of its structure and the availability of a wealth of functional data. Permeation properties of gramicidin A can be summarized as "it conducts monovalent cations, rejects anions, and binds divalent cations." Hence, a comprehensive test should consider the energetics of permeation for all three types of ions. To that end, we construct the potential of mean force for K(+), Cl(-), and Ca(2+) ions along the channel axis. For an independent check of the potential-of-mean-force results, we also calculate the free energy differences for these ions at the channel center and binding sites relative to bulk. We find that "rejection of anions" is satisfied but there are difficulties in accommodating the other two properties using the current MD force fields.

摘要

目前在生物分子分子动力学(MD)模拟中使用的刚性力场是针对球状蛋白质进行优化的。这些力场是否也能用于膜蛋白的MD模拟是一个需要解决的重要问题。在此,我们使用短杆菌肽A通道来解决这个问题,由于其结构简单且有大量功能数据,它提供了一个理想的测试案例。短杆菌肽A的渗透特性可概括为“它传导单价阳离子,排斥阴离子,并结合二价阳离子”。因此,全面的测试应考虑所有三种离子渗透的能量学。为此,我们构建了钾离子(K⁺)、氯离子(Cl⁻)和钙离子(Ca²⁺)沿通道轴的平均力势。为了独立检验平均力势的结果,我们还计算了这些离子在通道中心和结合位点相对于本体的自由能差。我们发现“排斥阴离子”这一特性得到了满足,但使用当前的MD力场来适应其他两个特性存在困难。

相似文献

1
Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations.
Biophys J. 2006 Jun 1;90(11):3941-50. doi: 10.1529/biophysj.105.074633. Epub 2006 Mar 13.
3
Molecular dynamics simulations of gramicidin A in a lipid bilayer: from structure-function relations to force fields.
Chem Phys Lipids. 2006 Jun;141(1-2):197-204. doi: 10.1016/j.chemphyslip.2006.02.012. Epub 2006 Mar 20.
5
Gramicidin A channel as a test ground for molecular dynamics force fields.
Biophys J. 2003 Apr;84(4):2159-68. doi: 10.1016/S0006-3495(03)75022-X.
7
Role of protein flexibility in ion permeation: a case study in gramicidin A.
Biophys J. 2006 Apr 1;90(7):2285-96. doi: 10.1529/biophysj.105.073205. Epub 2006 Jan 13.
8
Test of molecular dynamics force fields in gramicidin A.
Eur Biophys J. 2005 Jul;34(5):377-82. doi: 10.1007/s00249-005-0463-2. Epub 2005 Feb 12.
9
Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
Biophys J. 1995 Mar;68(3):876-92. doi: 10.1016/S0006-3495(95)80264-X.

引用本文的文献

1
Molecular dynamics simulations of membrane proteins.
Biophys Rev. 2012 Sep;4(3):271-282. doi: 10.1007/s12551-012-0084-9. Epub 2012 Sep 1.
3
Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A.
Membranes (Basel). 2016 Mar 18;6(1):20. doi: 10.3390/membranes6010020.
4
Force fields for simulating the interaction of surfaces with biological molecules.
Interface Focus. 2016 Feb 6;6(1):20150045. doi: 10.1098/rsfs.2015.0045.
5
Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels.
PLoS One. 2015 Aug 14;10(8):e0133000. doi: 10.1371/journal.pone.0133000. eCollection 2015.
6
Systematic study of binding of μ-conotoxins to the sodium channel NaV1.4.
Toxins (Basel). 2014 Dec 18;6(12):3454-70. doi: 10.3390/toxins6123454.
7
Molecular dynamics study of binding of µ-conotoxin GIIIA to the voltage-gated sodium channel Na(v)1.4.
PLoS One. 2014 Aug 18;9(8):e105300. doi: 10.1371/journal.pone.0105300. eCollection 2014.
8
Density-functional theory study of gramicidin A ion channel geometry and electronic properties.
J R Soc Interface. 2013 Sep 25;10(89):20130547. doi: 10.1098/rsif.2013.0547. Print 2013 Dec 6.
9
Computational studies of marine toxins targeting ion channels.
Mar Drugs. 2013 Mar 13;11(3):848-69. doi: 10.3390/md11030848.
10
Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.
PLoS One. 2012;7(3):e33058. doi: 10.1371/journal.pone.0033058. Epub 2012 Mar 13.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Theoretical and computational models of biological ion channels.
Q Rev Biophys. 2004 Feb;37(1):15-103. doi: 10.1017/s0033583504003968.
3
Role of protein flexibility in ion permeation: a case study in gramicidin A.
Biophys J. 2006 Apr 1;90(7):2285-96. doi: 10.1529/biophysj.105.073205. Epub 2006 Jan 13.
4
Computer simulations of membrane proteins.
Biochim Biophys Acta. 2004 Nov 3;1666(1-2):158-89. doi: 10.1016/j.bbamem.2004.04.012.
5
Ionic permeation free energy in gramicidin: a semimicroscopic perspective.
Biophys J. 2004 Jun;86(6):3529-41. doi: 10.1529/biophysj.103.039214.
6
Energetics of ion conduction through the gramicidin channel.
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):117-22. doi: 10.1073/pnas.2635314100. Epub 2003 Dec 22.
7
Gramicidin A channel as a test ground for molecular dynamics force fields.
Biophys J. 2003 Apr;84(4):2159-68. doi: 10.1016/S0006-3495(03)75022-X.
8
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
9
Trial by ordeal: ionic free energies in gramicidin.
Biophys J. 2002 Sep;83(3):1235-6. doi: 10.1016/S0006-3495(02)73896-4.
10
Computational studies of the gramicidin channel.
Acc Chem Res. 2002 Jun;35(6):366-75. doi: 10.1021/ar010028v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验