Baştuğ Turgut, Kuyucak Serdar
School of Physics, University of Sydney, Sydney, Australia.
Biophys J. 2006 Jun 1;90(11):3941-50. doi: 10.1529/biophysj.105.074633. Epub 2006 Mar 13.
The rigid force fields currently used in molecular dynamics (MD) simulations of biomolecules are optimized for globular proteins. Whether they can also be used in MD simulations of membrane proteins is an important issue that needs to be resolved. Here we address this issue using the gramicidin A channel, which provides an ideal test case because of the simplicity of its structure and the availability of a wealth of functional data. Permeation properties of gramicidin A can be summarized as "it conducts monovalent cations, rejects anions, and binds divalent cations." Hence, a comprehensive test should consider the energetics of permeation for all three types of ions. To that end, we construct the potential of mean force for K(+), Cl(-), and Ca(2+) ions along the channel axis. For an independent check of the potential-of-mean-force results, we also calculate the free energy differences for these ions at the channel center and binding sites relative to bulk. We find that "rejection of anions" is satisfied but there are difficulties in accommodating the other two properties using the current MD force fields.
目前在生物分子分子动力学(MD)模拟中使用的刚性力场是针对球状蛋白质进行优化的。这些力场是否也能用于膜蛋白的MD模拟是一个需要解决的重要问题。在此,我们使用短杆菌肽A通道来解决这个问题,由于其结构简单且有大量功能数据,它提供了一个理想的测试案例。短杆菌肽A的渗透特性可概括为“它传导单价阳离子,排斥阴离子,并结合二价阳离子”。因此,全面的测试应考虑所有三种离子渗透的能量学。为此,我们构建了钾离子(K⁺)、氯离子(Cl⁻)和钙离子(Ca²⁺)沿通道轴的平均力势。为了独立检验平均力势的结果,我们还计算了这些离子在通道中心和结合位点相对于本体的自由能差。我们发现“排斥阴离子”这一特性得到了满足,但使用当前的MD力场来适应其他两个特性存在困难。