Suppr超能文献

实验室规模土壤微宇宙中测量的垃圾填埋覆盖土壤中甲烷氧化能力。

Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.

出版信息

Appl Environ Microbiol. 1995 Feb;61(2):592-601. doi: 10.1128/aem.61.2.592-601.1995.

Abstract

Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).

摘要

实验室规模的土壤微宇宙中含有不同的土壤,用 CH(inf4) 渗透长达 6 个月,以研究它们形成甲烷氧化菌群落的能力。连续监测甲烷排放,直到建立稳定状态。多孔粗砂土壤发展出最大的甲烷氧化能力(10.4 mol 的 CH(inf4) (middot) m(sup-2) (middot) day(sup-1)),这是文献中报道的最大值。在稳定状态下,测定了土壤中 O(inf2)、CH(inf4)和甲烷氧化潜能的垂直分布。甲烷氧化潜能最大的地方是 O(inf2)和 CH(inf4)垂直分布重叠的地方。在 CH(inf4)氧化最强的地方,土壤中的有机质含量显著增加,可能来自甲烷氧化菌的生物量。甲烷氧化动力学表明,甲烷氧化能力较低(V(infmax)为 258 nmol (middot) g 的土壤(sup-1) (middot) h(sup-1))但亲和力相对较高(k(infapp)为 1.6 (mu)M)的土壤群落仍存在于 N(inf2)吹扫的对照微宇宙中,即使在没有 CH(inf4)的情况下,6 个月后也是如此。我们将这归因于一种兼性的、可能是混合营养的甲烷氧化微生物群落。当用 CH(inf4)吹扫时,会形成一种不同的甲烷氧化菌群落,其对 CH(inf4)的亲和力(k(infapp)为 31.7 (mu)M)较低,但对 CH(inf4)的氧化能力(V(infmax)为 998 nmol (middot) g 的土壤(sup-1) (middot) h(sup-1))较大,反映了一种活跃的高容量甲烷氧化菌群落的富集。与未经修饰的对照土壤相比,用污水污泥修饰粗砂可将 CH(inf4)氧化能力提高 26%;K(inf2)HPO(inf4)修饰没有显著影响,而用 NH(inf4)NO(inf3)修饰则降低了 64%的 CH(inf4)氧化能力。体外实验表明,NH(inf4)NO(inf3)添加(10 和 71 (mu)mol (middot) g 的土壤(sup-1))通过非特异性离子效应而非通过 NH(inf4)(sup+)的特异性抑制来抑制 CH(inf4)氧化。

相似文献

1
Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.
Appl Environ Microbiol. 1995 Feb;61(2):592-601. doi: 10.1128/aem.61.2.592-601.1995.
2
Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol.
Appl Environ Microbiol. 1995 Aug;61(8):3129-35. doi: 10.1128/aem.61.8.3129-3135.1995.
3
Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa).
Appl Environ Microbiol. 1997 Apr;63(4):1199-207. doi: 10.1128/aem.63.4.1199-1207.1997.
4
Oxidation and assimilation of atmospheric methane by soil methane oxidizers.
Appl Environ Microbiol. 1997 Mar;63(3):874-80. doi: 10.1128/aem.63.3.874-880.1997.
5
Differential inhibition by allylsulfide of nitrification and methane oxidation in freshwater sediment.
Appl Environ Microbiol. 1995 Dec;61(12):4278-83. doi: 10.1128/aem.61.12.4278-4283.1995.
10
Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters.
Waste Manag. 2012 Dec;32(12):2324-35. doi: 10.1016/j.wasman.2012.06.004. Epub 2012 Jun 30.

引用本文的文献

2
Can integrated rice-duck farming reduce CH emissions?
Environ Sci Pollut Res Int. 2020 Jan;27(1):1004-1008. doi: 10.1007/s11356-019-06992-0. Epub 2019 Dec 9.
3
Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea.
Environ Sci Pollut Res Int. 2019 Jan;26(3):2569-2579. doi: 10.1007/s11356-018-3792-2. Epub 2018 Nov 24.
4
A comparative evaluation of the performance of full-scale high-rate methane biofilter (HMBF) systems and flow-through laboratory columns.
Environ Sci Pollut Res Int. 2018 Dec;25(36):35845-35854. doi: 10.1007/s11356-018-3100-1. Epub 2018 Oct 1.
5
Tobermolite effects on methane removal activity and microbial community of a lab-scale soil biocover.
J Ind Microbiol Biotechnol. 2014 Jul;41(7):1119-29. doi: 10.1007/s10295-014-1448-x. Epub 2014 May 14.
6
Effects of ammonia on methane oxidation in landfill cover materials.
Environ Sci Pollut Res Int. 2014 Jan;21(2):911-20. doi: 10.1007/s11356-013-1963-8. Epub 2013 Jul 6.
7
Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.
Environ Monit Assess. 2013 Dec;185(12):9967-78. doi: 10.1007/s10661-013-3305-1. Epub 2013 Jun 25.
8
Empirical gas emission and oxidation measurement at cover soil of dumping site: example from Malaysia.
Environ Monit Assess. 2013 Jun;185(6):4919-32. doi: 10.1007/s10661-012-2913-5. Epub 2012 Oct 2.
10
Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes.
Appl Environ Microbiol. 2012 Jul;78(13):4715-23. doi: 10.1128/AEM.00853-12. Epub 2012 Apr 20.

本文引用的文献

1
Continuing worldwide increase in tropospheric methane, 1978 to 1987.
Science. 1988 Mar 4;239(4844):1129-31. doi: 10.1126/science.239.4844.1129.
2
Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils.
Appl Environ Microbiol. 1994 Oct;60(10):3514-21. doi: 10.1128/aem.60.10.3514-3521.1994.
4
Survival and Recovery of Methanotrophic Bacteria Starved under Oxic and Anoxic Conditions.
Appl Environ Microbiol. 1994 Jul;60(7):2602-8. doi: 10.1128/aem.60.7.2602-2608.1994.
5
Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen.
Appl Environ Microbiol. 1993 Feb;59(2):485-90. doi: 10.1128/aem.59.2.485-490.1993.
6
Rapid methane oxidation in a landfill cover soil.
Appl Environ Microbiol. 1990 Nov;56(11):3405-11. doi: 10.1128/aem.56.11.3405-3411.1990.
7
Distribution and rate of methane oxidation in sediments of the Florida everglades.
Appl Environ Microbiol. 1990 Sep;56(9):2902-11. doi: 10.1128/aem.56.9.2902-2911.1990.
8
Inhibition experiments on anaerobic methane oxidation.
Appl Environ Microbiol. 1985 Oct;50(4):940-5. doi: 10.1128/aem.50.4.940-945.1985.
9
Seasonal study of methane oxidation in lake washington.
Appl Environ Microbiol. 1984 Jun;47(6):1255-60. doi: 10.1128/aem.47.6.1255-1260.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验