Appl Environ Microbiol. 1995 Feb;61(2):592-601. doi: 10.1128/aem.61.2.592-601.1995.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).
实验室规模的土壤微宇宙中含有不同的土壤,用 CH(inf4) 渗透长达 6 个月,以研究它们形成甲烷氧化菌群落的能力。连续监测甲烷排放,直到建立稳定状态。多孔粗砂土壤发展出最大的甲烷氧化能力(10.4 mol 的 CH(inf4) (middot) m(sup-2) (middot) day(sup-1)),这是文献中报道的最大值。在稳定状态下,测定了土壤中 O(inf2)、CH(inf4)和甲烷氧化潜能的垂直分布。甲烷氧化潜能最大的地方是 O(inf2)和 CH(inf4)垂直分布重叠的地方。在 CH(inf4)氧化最强的地方,土壤中的有机质含量显著增加,可能来自甲烷氧化菌的生物量。甲烷氧化动力学表明,甲烷氧化能力较低(V(infmax)为 258 nmol (middot) g 的土壤(sup-1) (middot) h(sup-1))但亲和力相对较高(k(infapp)为 1.6 (mu)M)的土壤群落仍存在于 N(inf2)吹扫的对照微宇宙中,即使在没有 CH(inf4)的情况下,6 个月后也是如此。我们将这归因于一种兼性的、可能是混合营养的甲烷氧化微生物群落。当用 CH(inf4)吹扫时,会形成一种不同的甲烷氧化菌群落,其对 CH(inf4)的亲和力(k(infapp)为 31.7 (mu)M)较低,但对 CH(inf4)的氧化能力(V(infmax)为 998 nmol (middot) g 的土壤(sup-1) (middot) h(sup-1))较大,反映了一种活跃的高容量甲烷氧化菌群落的富集。与未经修饰的对照土壤相比,用污水污泥修饰粗砂可将 CH(inf4)氧化能力提高 26%;K(inf2)HPO(inf4)修饰没有显著影响,而用 NH(inf4)NO(inf3)修饰则降低了 64%的 CH(inf4)氧化能力。体外实验表明,NH(inf4)NO(inf3)添加(10 和 71 (mu)mol (middot) g 的土壤(sup-1))通过非特异性离子效应而非通过 NH(inf4)(sup+)的特异性抑制来抑制 CH(inf4)氧化。