Suppr超能文献

在清酒乳杆菌中碳水化合物的利用。

Carbohydrate Utilization in Lactobacillus sake.

出版信息

Appl Environ Microbiol. 1996 Jun;62(6):1922-7. doi: 10.1128/aem.62.6.1922-1927.1996.

Abstract

The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.

摘要

研究了清酒乳杆菌利用各种碳源的能力。为此,我们开发了一种化学成分确定的培养基,允许清酒乳杆菌和一些相关的乳杆菌生长。该培养基用于确定各种碳水化合物上的生长速率和清酒乳杆菌的一些营养需求。分离出对 2-脱氧-d-葡萄糖(不可代谢的葡萄糖类似物)有抗性的突变体。通过测定生长特性、碳水化合物摄取和磷酸化速率,研究了一株不能在甘露糖上生长的突变体和一株在甘露糖、果糖和蔗糖上生长缺陷的突变体。我们在这里表明,蔗糖、果糖、甘露糖、N-乙酰葡萄糖胺和葡萄糖通过磷酸烯醇丙酮酸:碳水化合物磷酸转移酶系统(PTS)进行运输和磷酸化。甘露糖特异性 PTS 透酶酶 II(supMan)负责甘露糖、葡萄糖和 N-乙酰葡萄糖胺的运输。证明了第二个非 PTS 系统负责葡萄糖的运输。随后的葡萄糖代谢涉及 ATP 依赖性磷酸化。核糖和葡萄糖酸盐通过 PTS 独立透酶进行运输。

相似文献

1
Carbohydrate Utilization in Lactobacillus sake.
Appl Environ Microbiol. 1996 Jun;62(6):1922-7. doi: 10.1128/aem.62.6.1922-1927.1996.
3
Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis.
J Bacteriol. 2018 Sep 10;200(19). doi: 10.1128/JB.00213-18. Print 2018 Oct 1.
10
The PTS transporters of Lactobacillus gasseri ATCC 33323.
BMC Microbiol. 2010 Mar 12;10:77. doi: 10.1186/1471-2180-10-77.

引用本文的文献

2
Mechanism of high D-aspartate production in the lactic acid bacterium Latilactobacillus sp. strain WDN19.
Appl Microbiol Biotechnol. 2022 Apr;106(7):2651-2663. doi: 10.1007/s00253-022-11870-w. Epub 2022 Mar 19.
4
Heme Uptake in Evidenced by a New Energy Coupling Factor (ECF)-Like Transport System.
Appl Environ Microbiol. 2020 Sep 1;86(18). doi: 10.1128/AEM.02847-19.
5
Metabolism of Chr82 in the Presence of Different Amounts of Fermentable Sugars.
Foods. 2020 Jun 2;9(6):720. doi: 10.3390/foods9060720.
6
Phenotypic Diversity of Strains.
Front Microbiol. 2018 Aug 28;9:2003. doi: 10.3389/fmicb.2018.02003. eCollection 2018.
7
Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome.
PLoS One. 2017 Nov 3;12(11):e0187542. doi: 10.1371/journal.pone.0187542. eCollection 2017.
8
Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products.
Microorganisms. 2017 Sep 6;5(3):56. doi: 10.3390/microorganisms5030056.

本文引用的文献

1
Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO.
Microbiology (Reading). 1996 May;142 ( Pt 5):1181-1190. doi: 10.1099/13500872-142-5-1181.
2
Biochemical characterization of lactobacilli from dry fermented sausages.
Int J Food Microbiol. 1993 Apr;18(2):107-13. doi: 10.1016/0168-1605(93)90215-3.
3
Energy transduction in lactic acid bacteria.
FEMS Microbiol Rev. 1993 Sep;12(1-3):125-47. doi: 10.1111/j.1574-6976.1993.tb00015.x.
5
Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
Microbiol Rev. 1993 Sep;57(3):543-94. doi: 10.1128/mr.57.3.543-594.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验