Suppr超能文献

Regulation of collecting duct water permeability independent of cAMP-mediated AVP response.

作者信息

Lankford S P, Chou C L, Terada Y, Wall S M, Wade J B, Knepper M A

机构信息

Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

Am J Physiol. 1991 Sep;261(3 Pt 2):F554-66. doi: 10.1152/ajprenal.1991.261.3.F554.

Abstract

We have used the isolated perfused tubule technique, measurements of adenosine 3',5'-cyclic monophosphate (cAMP) content in single tubules, and freeze-fracture electron microscopy to study the basis of high vasopressin-independent (basal) osmotic water permeability (Pf) in the terminal inner medullary collecting duct (IMCD) of the rat. The results confirmed the observation that the basal Pf of the terminal IMCD is considerably higher than that of the initial IMCD. They also showed that the basal Pf of the terminal IMCD is regulated by in vivo factors related to water intake, such that a very high vasopressin-independent Pf can be induced in isolated tubules by prior in vivo thirsting. Tubules from thirsted rats did not display elevated urea permeabilities, nor did they exhibit measurable cAMP levels in the absence of exogenous vasopressin, indicating that the high basal Pf was not due to residual binding of vasopressin to its receptors. Freeze-fracture studies in thirsted rats demonstrated the presence of intramembrane particle (IMP) clusters in both initial and terminal IMCD, with more in the latter. Water loading of the rats suppressed the incidence of clusters almost entirely but did not fully suppress the basal Pf in the terminal IMCD, raising the possibility that a component of transepithelial water transport may occur independently of the vasopressin-regulated IMP clusters. On the basis of these results, we conclude that the vasopressin-independent Pf in the terminal IMCD can be stably elevated to very high levels in response to in vivo thirsting. This elevation appears to be due to a chronic conditioning effect mediated by unknown in vivo factors and is not due to the short-term cAMP-mediated regulatory effect of vasopressin.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验