Appl Environ Microbiol. 1997 Oct;63(10):3957-64. doi: 10.1128/aem.63.10.3957-3964.1997.
The marine Beggiatoa strains MS-81-6 and MS-81-1c are filamentous, gliding, colorless sulfur bacteria. They have traditionally been cultured in very limited quantities in sulfide gradient media, where they grow as chemolithoautotrophs, forming a thin horizontal plate well below the air-agar interface. There, the facultatively chemolithoautotrophic strain MS-81-6 quantitatively harvests the flux of sulfide diffusing from below and oxidizes it to sulfate by using oxygen as the electron acceptor. Only recently have these strains been cultivated in bulk in defined liquid media (K. D. Hagen and D. C. Nelson, Appl. Environ. Microbiol. 62:947-953, 1996). In the current study, the obligately chemolithoautotrophic strain MS-81-1c was shown to have, despite much greater storage of elemental sulfur, an apparent Y(infH)(inf(inf2))(infS) twice that of MS-81-6 when the two strains were grown in identical sulfide-limited gradient media. While the basis of this difference in energy conservation has not been established, differences in sulfur oxidation enzymes were noted. Strain MS-81-1c appeared to be able to oxidize sulfite by using either the adenosine phosphosulfate (APS) pathway or a sulfite:acceptor oxidoreductase. APS pathway enzymes (ATP sulfurylase and APS reductase) were present at relatively high and constant levels regardless of growth conditions, while the sulfite:acceptor oxidoreductase activity varied at least eightfold, with the highest activity produced in sulfide gradient medium. By contrast, strain MS-81-6 showed no detectable activity of the APS pathway enzymes and possessed a sulfite:acceptor oxidoreductase activity just sufficient to account for its observed rate of growth in sulfide gradient medium. Freshwater strain OH-75-2a showed activity and regulation of sulfite:acceptor oxidoreductase consistent with lithotrophic energy conservation, a feature not yet proven for any freshwater Beggiatoa strain.
海洋贝氏硫菌 MS-81-6 和 MS-81-1c 菌株是丝状、滑行、无色的硫细菌。它们传统上在有限数量的硫化物梯度培养基中培养,在那里它们作为化能自养菌生长,形成一个低于空气-琼脂界面的薄水平板。在那里,兼性化能自养菌株 MS-81-6 定量地收获从下面扩散的硫化物通量,并通过使用氧气作为电子受体将其氧化为硫酸盐。直到最近,这些菌株才在定义的液体培养基中大量培养(K.D.Hagen 和 D.C.Nelson,Appl.Environ.Microbiol.62:947-953,1996)。在当前的研究中,尽管具有更多的元素硫储存,但当这两种菌株在相同的硫化物限制梯度培养基中生长时,专性化能自养菌株 MS-81-1c 的表观 Y(infH)(inf(inf2))(infS)是 MS-81-6 的两倍。虽然尚未确定这种能量守恒差异的基础,但注意到硫氧化酶存在差异。菌株 MS-81-1c 似乎能够通过使用腺苷磷酸硫酸(APS)途径或亚硫酸盐:受体氧化还原酶来氧化亚硫酸盐。无论生长条件如何,APS 途径酶(ATP 硫酸酶和 APS 还原酶)都以相对较高且恒定的水平存在,而亚硫酸盐:受体氧化还原酶活性变化至少 8 倍,在硫化物梯度培养基中产生最高活性。相比之下,菌株 MS-81-6 没有检测到 APS 途径酶的活性,并且具有仅足以解释其在硫化物梯度培养基中观察到的生长速率的亚硫酸盐:受体氧化还原酶活性。淡水菌株 OH-75-2a 表现出与 lithotrophic 能量守恒一致的亚硫酸盐:受体氧化还原酶的活性和调节,这一特征尚未被证明适用于任何淡水贝氏硫菌菌株。