Appl Environ Microbiol. 1997 Nov;63(11):4435-40. doi: 10.1128/aem.63.11.4435-4440.1997.
The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.
白腐菌 Ceriporiopsis subvermispora 能够降解非酚类木质素结构,但似乎缺乏木质素过氧化物酶 (LiP),而 LiP 通常被认为是负责这些反应的酶。众所周知,产 LiP 的真菌,如 Phanerochaete chrysosporium,通过其芳族部分的单电子氧化来降解非酚类木质素,但对于 LiP 非产生菌如 C. subvermispora 中的木质素降解机制知之甚少。为了解决这个问题,将 C. subvermispora 和 P. chrysosporium 种植在纤维素块上,并给予两种高分子量、聚乙二醇连接的模型化合物,它们代表木质素的主要非酚类芳基甘油-β-芳基醚结构。设计这些模型化合物是为了通过单电子氧化使其裂解后,将诊断片段连接到聚乙二醇上。一种模型化合物在其丙基侧链的 C(inf(alpha))上用 (sup13)C 标记,并带有环烷氧基取代基,这些取代基有利于单电子氧化后 C(inf(alpha))-C(inf(beta))的裂解。另一种模型化合物在其丙基侧链的 C(inf(beta))上用 (sup13)C 标记,并带有环烷氧基取代基,这些取代基有利于单电子氧化后 C(inf(beta))-O-芳基的裂解。为了评估真菌对模型化合物的降解,从培养物中回收高分子量代谢物,并通过 (sup13)C 核磁共振光谱进行分析。结果表明,C. subvermispora 和 P. chrysosporium 都通过单电子氧化途径降解了这些模型化合物。因此,这两种真菌的木质素降解机制相似。C. subvermispora 可能使用隐蔽的 LiP 来催化这些 C(inf(alpha))-C(inf(beta))和 C(inf(beta))-O-芳基裂解反应,但数据也与其他一些单电子氧化剂的参与一致。