Suppr超能文献

酿酒酵母同工酶-1-细胞色素c与牛微粒体细胞色素b5之间一级蛋白质电子转移中内部氢键网络的作用

The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5.

作者信息

Whitford D, Gao Y, Pielak G J, Williams R J, McLendon G L, Sherman F

机构信息

Department of Biochemistry, University of Oxford, England.

出版信息

Eur J Biochem. 1991 Sep 1;200(2):359-67. doi: 10.1111/j.1432-1033.1991.tb16193.x.

Abstract

An internal water molecule (designated WAT166) is found in iso-1-cytochrome c which is part of a redox-state-dependent hydrogen bond network. The position of this water molecule with respect to the polypeptide fold can be altered or even displaced by site-directed mutagenesis leading to structural perturbations and associated changes in redox potential. Using saturation transfer 1H-NMR methods, this study measures changes in the electron transfer reactivity for three variants of yeast iso-1-cytochromes c in which the position of this water molecule is altered. In particular, the reverse electron transfer rate is measured within a complex formed between either wild-type or variant yeast iso-1-cytochromes c and the tryptic fragment of bovine liver microsomal cytochrome b5. For three variants of yeast iso-1-cytochrome c the rate constants measured by saturation transfer are wild-type (Asn52, E0 = 270 mV, kex = 0.3 s-1), Asn52----Ala (E0 = 240 mV, kex = 0.6 s-1), Asn52----Ile (E0 = 220 mV, kex = 1.0 s-1). The first-order rates are compared with that of a fourth variant Phe82----Gly which has been measured previously (E0 = 220 mV, kex = 0.7 s-1). An analysis of the variation in the observed cross exchange rate using Marcus theory shows that these changes can be predicted quantitatively by the shift in redox potential that accompanies mutagenesis. So, although the perturbation of the internal water molecule by mutagenesis alters both the structure and redox potential of cytochrome c, surprisingly it does not significantly influence the intrinsic electron transfer reactivity of the protein. Studies of the activation parameters suggests that a variation of temperature changes both delta G* and also the prefactor. These data are discussed in terms of models involving dynamic molecular recognition between proteins.

摘要

在等-1-细胞色素c中发现了一个内部水分子(命名为WAT166),它是氧化还原状态依赖性氢键网络的一部分。通过定点诱变,这个水分子相对于多肽折叠的位置可能会改变甚至移位,从而导致结构扰动和氧化还原电位的相关变化。本研究使用饱和转移1H-NMR方法,测量了酵母等-1-细胞色素c的三个变体中电子转移反应性的变化,其中该水分子的位置发生了改变。特别是,在野生型或变体酵母等-1-细胞色素c与牛肝微粒体细胞色素b5的胰蛋白酶片段形成的复合物中测量反向电子转移速率。对于酵母等-1-细胞色素c的三个变体,通过饱和转移测量的速率常数分别为野生型(Asn52,E0 = 270 mV,kex = 0.3 s-1)、Asn52→Ala(E0 = 240 mV,kex = 0.6 s-1)、Asn52→Ile(E0 = 220 mV,kex = 1.0 s-1)。将一级速率与先前测量的第四个变体Phe82→Gly(E0 = 220 mV,kex = 0.7 s-1)的速率进行比较。使用马库斯理论对观察到的交叉交换速率变化进行分析表明,可以通过诱变伴随的氧化还原电位变化对这些变化进行定量预测。因此,尽管诱变对内部水分子的扰动改变了细胞色素c的结构和氧化还原电位,但令人惊讶的是,它并没有显著影响蛋白质的固有电子转移反应性。活化参数的研究表明,温度变化会改变ΔG*以及预因子。根据涉及蛋白质之间动态分子识别的模型对这些数据进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验