Lett C M, Berghuis A M, Frey H E, Lepock J R, Guillemette J G
Department of Chemistry and the Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
J Biol Chem. 1996 Nov 15;271(46):29088-93. doi: 10.1074/jbc.271.46.29088.
Eukaryotic cytochromes c contain a buried water molecule (Wat166) next to the heme that is associated through a network of hydrogen bonds to three invariant residues: tyrosine 67, asparagine 52, and threonine 78. Single-site mutations to two of these residues (Y67F, N52I, N52A) and the double-site mutation (Y67F/N52I) were introduced into Saccharomyces cerevisiae iso-1-cytochrome c to disrupt the hydrogen bonding network associated with Wat166. The N52I and Y67F/N52I mutations lead to a loss of Wat166 while N52A and Y67F modifications lead to the addition of a new water molecule (Wat166) at an adjacent site (Berghuis, A. M., Guillemette, J. G., McLendon, G., Sherman, F., Smith, M., and Brayer, G. D. (1994) J. Mol. Biol. 236, 786-799; Berghuis, A. M., Guillemette, J. G., Smith, M., and Brayer, G. D. (1994) J. Mol. Biol. 235, 1326-1341; Rafferty, S. P., Guillemette, J. G., Berghuis, A. M., Smith, M., Brayer, G. D., and Mauk, A. G. (1996) Biochemistry, 35, 10784-10792). We used differential scanning calorimetry (DSC) to determine the change in heat capacity (DeltaCp) and the temperature dependent enthalpy (DeltaHvH) for the thermal denaturation of both the oxidized and reduced forms of the iso-1 cytochrome c variants. The relative stabilities were expressed as the difference in the free energy of denaturation (DeltaGD) between the wild type and mutant proteins in both redox states. The disruption of the hydrogen bonding network results in increased stability for all of the mutant proteins in both redox states with the exception of the reduced Y67F variant which has approximately the same stability as the reduced wild type protein. For the oxidized proteins, DeltaGD values of 1.3, 4.1, 1.5, and 5.8 kcal/mol were determined for N52A, N52I, Y67F, and Y67F/N52I, respectively. The oxidized proteins were 8.2-11.5 kcal/mol less stable than the reduced proteins due to a redox-dependent increase in the entropy of unfolding.
真核细胞色素c在血红素旁边含有一个埋藏的水分子(Wat166),该水分子通过氢键网络与三个不变残基相连:酪氨酸67、天冬酰胺52和苏氨酸78。将其中两个残基的单点突变(Y67F、N52I、N52A)和双点突变(Y67F/N52I)引入酿酒酵母同工酶-1-细胞色素c中,以破坏与Wat166相关的氢键网络。N52I和Y67F/N52I突变导致Wat166丢失,而N52A和Y67F修饰导致在相邻位点添加一个新的水分子(Wat166)(伯格休斯,A.M.,吉耶梅特,J.G.,麦克伦登,G.,谢尔曼,F.,史密斯,M.,和布雷耶,G.D.(1994年)《分子生物学杂志》236,786 - 799;伯格休斯,A.M.,吉耶梅特,J.G.,史密斯,M.,和布雷耶,G.D.(1994年)《分子生物学杂志》235,1326 - 1341;拉弗蒂,S.P.,吉耶梅特,J.G.,伯格休斯,A.M.,史密斯,M.,布雷耶,G.D.,和莫克,A.G.(1996年)《生物化学》,35,10784 - 10792)。我们使用差示扫描量热法(DSC)来确定同工酶-1细胞色素c变体氧化态和还原态热变性的热容变化(ΔCp)和温度依赖性焓(ΔHvH)。相对稳定性表示为野生型和突变蛋白在两种氧化还原状态下变性自由能的差异(ΔGD)。氢键网络的破坏导致两种氧化还原状态下所有突变蛋白的稳定性增加,但还原态的Y67F变体除外,其稳定性与还原态野生型蛋白大致相同。对于氧化蛋白,N52A、N52I、Y67F和Y67F/N52I的ΔGD值分别为1.3、4.1、1.5和5.8千卡/摩尔。由于解折叠熵的氧化还原依赖性增加,氧化蛋白比还原蛋白稳定性低8.2 - 11.5千卡/摩尔。