Liu H B, Pal U, Perez R, Ascencio J A
Programa de Investigación en Ductos, Materiales y Corrosión, Instituto Mexicano del Petróleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, C.P.07730, México D.F., Mexico.
J Phys Chem B. 2006 Mar 23;110(11):5191-5. doi: 10.1021/jp056060e.
Classical molecular dynamics simulation is used for structural thermodynamic and dynamic analysis of Au-Pd bimetallic clusters. It is observed that the Pd-core/Au-shell structure is the most stable, and can be formed through annealing of other structures such as Au-core/Pd-shell, eutecticlike, or solid solution. Depending on the starting temperature and initial composition, three-layer icosahedral nanorod, face-centered cubic (fcc) nanorod, and fcc cluster can be obtained on slow cooling. The three-layer icosahedral nanorod structure is not as stable as the Pd-core/Au-shell decahedron; however it is more stable than the solid-solution decahedron structure up to 400 K. Our findings provide valuable insight into catalysis using Au-Pd and other similar bimetallic clusters.
经典分子动力学模拟用于金-钯双金属团簇的结构、热力学和动力学分析。观察到钯核/金壳结构是最稳定的,并且可以通过其他结构(如金核/钯壳、类共晶或固溶体)的退火形成。根据起始温度和初始组成,在缓慢冷却时可以获得三层二十面体纳米棒、面心立方(fcc)纳米棒和fcc团簇。三层二十面体纳米棒结构不如钯核/金壳十面体稳定;然而,在高达400 K的温度下,它比固溶体十面体结构更稳定。我们的研究结果为使用金-钯和其他类似双金属团簇的催化提供了有价值的见解。