Zhang Peisu, Furukawa Katsutoshi, Opresko Patricia L, Xu Xiangru, Bohr Vilhelm A, Mattson Mark P
Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
J Neurochem. 2006 Apr;97(2):567-81. doi: 10.1111/j.1471-4159.2006.03779.x. Epub 2006 Mar 15.
Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.
端粒是染色体末端的特殊结构,由DNA序列TTAGGG的串联重复序列和几种保护DNA并调节端粒可塑性的蛋白质组成。端粒相关蛋白TRF2(端粒重复序列结合因子2)对于端粒结构和功能的控制至关重要;TRF2功能障碍会导致端粒末端暴露,并激活共济失调毛细血管扩张症突变(ATM)介导的DNA损伤反应。最近的研究结果表明,端粒磨损可导致有丝分裂细胞衰老或凋亡,但端粒在分化神经元中的功能尚不清楚。在这里,我们通过抑制神经元(原代胚胎海马神经元)和有丝分裂神经细胞(星形胶质细胞和成神经细胞瘤细胞)中的TRF2来研究端粒功能障碍的影响。我们证明,腺病毒介导的显性负性TRF2(DN-TRF2)表达诱导的端粒功能障碍会触发DNA损伤反应,在每种细胞类型中都会形成含有磷酸化组蛋白H2AX和激活的ATM的核灶。在有丝分裂神经细胞中,DN-TRF2诱导p53和p21激活以及衰老(由β-半乳糖苷酶上调表示)。相反,在神经元中,DN-TRF2增加了p21,但未诱导p53或β-半乳糖苷酶。此外,TRF2抑制增强了海马神经元的形态、分子和生物物理分化。这些发现表明有丝分裂神经细胞和神经元对端粒功能障碍的分子和生理反应不同,表明TRF2在调节神经元分化中起作用,并提示抑制TRF2功能在神经肿瘤治疗中的潜在治疗应用。