Stroud Phillip D, Sydoriak Stephen J, Riese Jane M, Smith James P, Mniszewski Susan M, Romero Phillip R
Los Alamos National Laboratory, MS F-607, Los Alamos, NM 87545, USA.
Math Biosci. 2006 Oct;203(2):301-18. doi: 10.1016/j.mbs.2006.01.007. Epub 2006 Mar 15.
The expected number of new infections per day per infectious person during an epidemic has been found to exhibit power-law scaling with respect to the susceptible fraction of the population. This is in contrast to the linear scaling assumed in traditional epidemiologic modeling. Based on simulated epidemic dynamics in synthetic populations representing Los Angeles, Chicago, and Portland, we find city-dependent scaling exponents in the range of 1.7-2.06. This scaling arises from variations in the strength, duration, and number of contacts per person. Implementation of power-law scaling of the new infection rate is quite simple for SIR, SEIR, and histogram-based epidemic models. Treatment of the effects of the social contact structure through this power-law formulation leads to significantly lower predictions of final epidemic size than the traditional linear formulation.
在疫情期间,已发现每个感染者每天的新感染预期数量相对于人群中的易感比例呈现幂律缩放。这与传统流行病学模型中假设的线性缩放形成对比。基于对代表洛杉矶、芝加哥和波特兰的合成人群中的模拟疫情动态,我们发现城市相关的缩放指数在1.7 - 2.06范围内。这种缩放源于每个人接触的强度、持续时间和数量的变化。对于SIR、SEIR和基于直方图的疫情模型而言,新感染率的幂律缩放实施起来相当简单。通过这种幂律公式处理社会接触结构的影响,会导致最终疫情规模的预测比传统线性公式显著更低。