Hickmann Kyle S, Fairchild Geoffrey, Priedhorsky Reid, Generous Nicholas, Hyman James M, Deshpande Alina, Del Valle Sara Y
Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
Defense Systems Analysis Division Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
PLoS Comput Biol. 2015 May 14;11(5):e1004239. doi: 10.1371/journal.pcbi.1004239. eCollection 2015 May.
Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.
传染病是全球发病和死亡的主要原因之一;因此,预测其影响对于制定有效的应对策略至关重要。根据美国疾病控制与预防中心(CDC)的数据,季节性流感影响美国5%至20%的人口,并因住院和缺勤造成重大经济影响。了解流感动态并预测其影响是制定预防和缓解策略的基础。我们将现代数据同化方法与维基百科访问日志以及美国疾病控制与预防中心的流感样疾病(ILI)报告相结合,以创建季节性流感的每周预测。这些方法应用于2013 - 2014年流感季节,但具有足够的通用性,在给定发病率或病例数数据的情况下可预测任何疾病爆发。我们调整了疾病模型的初始化和参数化,并表明这使我们能够确定系统模型偏差。此外,我们提供了一种方法来确定模型与观测值的差异所在,并评估预测准确性。结果表明,维基百科文章访问日志与历史ILI记录高度相关,并能在ILI数据可用前几周准确预测。结果显示,在流感季节高峰之前,我们的预测方法为2013 - 2014年ILI观测生成的50%和95%可信区间在预测的大多数周内包含了实际观测值。然而,由于我们的模型未考虑再次感染或多种流感毒株,在流感季节高峰过后,疫情的后期情况预测得并不好。