Congdon Peter
Department of Geography, Queen Mary (University of London), Mile End Road, London E1 4NS, England, UK.
Biometrics. 2006 Mar;62(1):269-78. doi: 10.1111/j.1541-0420.2005.00419.x.
This article sets out a modeling framework for modeling health outcomes over area, age, and time dimensions that takes account of spatial correlation, interactions between dimensions, and cohort as well as age effects. The goals of the framework include parsimony and parameter interpretability. Multivariate extensions may be made allowing interdependent or shared effects between different outcomes (e.g., ill health and mortality). A particular focus is on assessing the proportionality assumption whereby separate age and area effects multiply to produce age-area mortality or illness rates, and age-area interactions are assumed not to exist. A trivariate (mortality-health) application of the framework involves cross-sectional data in the 33 London boroughs, while a longitudinal univariate application involves deaths for the same areas over four 5-year periods starting in 1979.
本文提出了一个用于在区域、年龄和时间维度上对健康结果进行建模的框架,该框架考虑了空间相关性、维度之间的相互作用、队列效应以及年龄效应。该框架的目标包括简约性和参数可解释性。可以进行多变量扩展,允许不同结果(如健康不佳和死亡率)之间存在相互依存或共享效应。特别关注评估比例假设,即单独的年龄和区域效应相乘产生年龄 - 区域死亡率或发病率,并且假设不存在年龄 - 区域相互作用。该框架的一个三变量(死亡率 - 健康)应用涉及伦敦33个行政区的横截面数据,而纵向单变量应用涉及从1979年开始的四个5年期间相同区域的死亡情况。