Chen Jarvis T, Coull Brent A, Waterman Pamela D, Schwartz Joel, Krieger Nancy
Department of Society, Human Development, and Health, Harvard School of Public Health, Boston, MA 02215, USA.
Stat Med. 2008 Sep 10;27(20):3957-83. doi: 10.1002/sim.3263.
Efforts to monitor, investigate, and ultimately eliminate health disparities across racial/ethnic and socioeconomic groups can benefit greatly from spatiotemporal models that enable exploration of spatial and temporal variation in health. Hierarchical Bayes methods are well-established tools in the statistical literature for fitting such models, as they permit smoothing of unstable small-area rates. However, issues presented by 'real-life' surveillance data can be a barrier to routine use of these models by epidemiologists. These include (1) shifting of regional boundaries over time, (2) social inequalities in racial/ethnic residential segregation, which imply differential spatial structuring across different racial/ethnic groups, and (3) heavy computational burdens for large spatiotemporal data sets. Using data from a study of changing socioeconomic gradients in female breast cancer incidence in two population-based cancer registries covering the San Francisco Bay Area and Los Angeles County, CA (1988--2002), we illustrate a two-stage approach to modeling health disparities and census tract (CT) variation in incidence over time. In the first stage, we fit race- and year-specific spatial models using CT boundaries normalized to the U.S. Census 2000. In stage 2, temporal patterns in the race- and year-specific estimates of racial/ethnic and socioeconomic effects are explored using a variety of methods. Our approach provides a straightforward means of fitting spatiotemporal models in large data sets, while highlighting differences in spatial patterning across racial/ethnic population and across time.
监测、调查并最终消除不同种族/族裔和社会经济群体间的健康差异所做的努力,能够从时空模型中大大受益,这些模型有助于探究健康状况的空间和时间变化。在统计文献中,分层贝叶斯方法是用于拟合此类模型的成熟工具,因为它们能够平滑不稳定的小区域发病率。然而,“现实生活”中的监测数据所带来的问题,可能会成为流行病学家常规使用这些模型的障碍。这些问题包括:(1)区域边界随时间推移而变动;(2)种族/族裔居住隔离中的社会不平等,这意味着不同种族/族裔群体存在不同的空间结构;(3)大型时空数据集的计算负担繁重。利用来自一项关于加利福尼亚州旧金山湾区和洛杉矶县两个基于人群的癌症登记处女性乳腺癌发病率社会经济梯度变化研究(1988 - 2002年)的数据,我们阐述了一种两阶段方法,用于对健康差异以及随时间变化的普查区(CT)发病率变化进行建模。在第一阶段,我们使用归一化到2000年美国人口普查的CT边界,拟合特定种族和年份的空间模型。在第二阶段,使用多种方法探究特定种族和年份的种族/族裔及社会经济效应估计值的时间模式。我们的方法为在大型数据集中拟合时空模型提供了一种直接的手段,同时突出了不同种族/族裔人群以及不同时间的空间模式差异。