Schulmerich Matthew V, Finney William F, Fredricks Richard A, Morris Michael D
Department of Chemistry, University of Michigan, Ann Arbor, 48109-1055, USA.
Appl Spectrosc. 2006 Feb;60(2):109-14. doi: 10.1366/000370206776023340.
We report the use of a fiber-optic probe with global illumination and an array of 50 collection fibers (PhAT probe, Kaiser Optical Systems, Inc.) to obtain Raman spectra and 50 spatial element maps of polymers through overlayers of other polymers that are highly scattering. Band target entropy minimization (BTEM) is used to recover the spectra of the subsurface components and generate maps of their distributions. This approach to subsurface mapping is tested with model systems consisting of two or three layers of polyethylene, polytetrafluoroethylene (Teflon), and polyoxymethylene (Delrin) arranged in different geometries. Raman spectra and maps were obtained through overlayer thicknesses of up to 13 mm. Subsurface spatial resolution is achieved because each fiber views an asymmetric distribution of Raman scattered light from surface and subsurface components that depends on the position of the fiber relative to the depth and position of a component and the extent of photon diffusion through the system.
我们报告了使用一种具有全局照明功能的光纤探头以及由50根收集光纤组成的阵列(PhAT探头,凯撒光学系统公司),通过高度散射的其他聚合物覆盖层来获取聚合物的拉曼光谱和50个空间元素图。采用波段目标熵最小化(BTEM)来恢复地下组分的光谱并生成其分布图。这种地下测绘方法在由两层或三层以不同几何形状排列的聚乙烯、聚四氟乙烯(特氟龙)和聚甲醛(赛钢)组成的模型系统上进行了测试。通过高达13毫米的覆盖层厚度获得了拉曼光谱和图谱。之所以能实现地下空间分辨率,是因为每根光纤所观察到的来自表面和地下组分的拉曼散射光的不对称分布,这取决于光纤相对于组分深度和位置的位置以及光子在系统中的扩散程度。