Paul Koushik, Blair David F
Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
J Bacteriol. 2006 Apr;188(7):2502-11. doi: 10.1128/JB.188.7.2502-2511.2006.
FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer.
FliN是许多细菌鞭毛基体中C环的主要组成部分。每个鞭毛中FliN的拷贝数超过100个,它与FliM和FliG一起形成开关复合体,在鞭毛组装、旋转以及顺时针-逆时针切换中发挥作用。FliN对于鞭毛组装和切换至关重要,但其确切功能尚不清楚。该蛋白的C末端部分保守性最好且对功能最为重要;来自嗜热栖热菌的FliN的这个C末端结构域的晶体结构显示,它形成了一个主要由β链组成的鞍形二聚体(P. N. Brown、M. A. A. Mathews、L. A. Joss、C. P. Hill和D. F. Blair,《细菌学杂志》187:2890 - 2902,2005年)。平衡沉降研究表明,FliN可以形成稳定的四聚体,并且FliM1FliN4复合体也很稳定。在这里,我们通过靶向交联研究了FliN亚基的组织方式。在FliN的不同位置单独或成对引入半胱氨酸残基,通过氧化诱导二硫键交联。在二聚体末端附近的某些位置以及结构未明确的N末端结构域中的一些位置观察到了有效的交联。两个半胱氨酸替代的某些组合产生了高产率的交联四聚体。这些结果支持了一个模型,即FliN以甜甜圈形状的四聚体形式组织,部分通过涉及N末端结构域的接触而稳定。电子显微镜重建显示C环底部有一个凸起,其大小和形状与假设的FliN四聚体非常匹配。