Suppr超能文献

大肠杆菌鞭毛马达中FliN亚基的组织形式。

Organization of FliN subunits in the flagellar motor of Escherichia coli.

作者信息

Paul Koushik, Blair David F

机构信息

Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Bacteriol. 2006 Apr;188(7):2502-11. doi: 10.1128/JB.188.7.2502-2511.2006.

Abstract

FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer.

摘要

FliN是许多细菌鞭毛基体中C环的主要组成部分。每个鞭毛中FliN的拷贝数超过100个,它与FliM和FliG一起形成开关复合体,在鞭毛组装、旋转以及顺时针-逆时针切换中发挥作用。FliN对于鞭毛组装和切换至关重要,但其确切功能尚不清楚。该蛋白的C末端部分保守性最好且对功能最为重要;来自嗜热栖热菌的FliN的这个C末端结构域的晶体结构显示,它形成了一个主要由β链组成的鞍形二聚体(P. N. Brown、M. A. A. Mathews、L. A. Joss、C. P. Hill和D. F. Blair,《细菌学杂志》187:2890 - 2902,2005年)。平衡沉降研究表明,FliN可以形成稳定的四聚体,并且FliM1FliN4复合体也很稳定。在这里,我们通过靶向交联研究了FliN亚基的组织方式。在FliN的不同位置单独或成对引入半胱氨酸残基,通过氧化诱导二硫键交联。在二聚体末端附近的某些位置以及结构未明确的N末端结构域中的一些位置观察到了有效的交联。两个半胱氨酸替代的某些组合产生了高产率的交联四聚体。这些结果支持了一个模型,即FliN以甜甜圈形状的四聚体形式组织,部分通过涉及N末端结构域的接触而稳定。电子显微镜重建显示C环底部有一个凸起,其大小和形状与假设的FliN四聚体非常匹配。

相似文献

1
Organization of FliN subunits in the flagellar motor of Escherichia coli.
J Bacteriol. 2006 Apr;188(7):2502-11. doi: 10.1128/JB.188.7.2502-2511.2006.
2
Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima.
J Bacteriol. 2005 Apr;187(8):2890-902. doi: 10.1128/JB.187.8.2890-2902.2005.
3
FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking.
J Bacteriol. 2005 Aug;187(16):5640-7. doi: 10.1128/JB.187.16.5640-5647.2005.
6
Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli.
J Biol Chem. 2010 Jan 1;285(1):675-84. doi: 10.1074/jbc.M109.068676. Epub 2009 Oct 26.
7
Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9370-5. doi: 10.1073/pnas.1000935107. Epub 2010 May 3.
9
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.
10
FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body.
J Mol Biol. 1996 Aug 16;261(2):195-208. doi: 10.1006/jmbi.1996.0452.

引用本文的文献

3
Precise Measurement of the Stoichiometry of the Adaptive Bacterial Flagellar Switch.
mBio. 2023 Apr 25;14(2):e0018923. doi: 10.1128/mbio.00189-23. Epub 2023 Mar 22.
4
Structural Conservation and Adaptation of the Bacterial Flagella Motor.
Biomolecules. 2020 Oct 29;10(11):1492. doi: 10.3390/biom10111492.
6
Organization of the Flagellar Switch Complex of Bacillus subtilis.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00626-18. Print 2019 Apr 15.
7
Cryo-electron tomography of periplasmic flagella in Borrelia burgdorferi reveals a distinct cytoplasmic ATPase complex.
PLoS Biol. 2018 Nov 9;16(11):e3000050. doi: 10.1371/journal.pbio.3000050. eCollection 2018 Nov.
8
Three SpoA-domain proteins interact in the creation of the flagellar type III secretion system in .
J Biol Chem. 2018 Sep 7;293(36):13961-13973. doi: 10.1074/jbc.RA118.002263. Epub 2018 Jul 10.
9
CW and CCW Conformations of the E. coli Flagellar Motor C-Ring Evaluated by Fluorescence Anisotropy.
Biophys J. 2018 Feb 6;114(3):641-649. doi: 10.1016/j.bpj.2017.12.001.

本文引用的文献

2
FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking.
J Bacteriol. 2005 Aug;187(16):5640-7. doi: 10.1128/JB.187.16.5640-5647.2005.
3
Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima.
J Bacteriol. 2005 Apr;187(8):2890-902. doi: 10.1128/JB.187.8.2890-2902.2005.
5
The bacterial flagellar motor: structure and function of a complex molecular machine.
Int Rev Cytol. 2004;233:93-134. doi: 10.1016/S0074-7696(04)33003-2.
7
Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems.
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):70-5. doi: 10.1073/pnas.0304579101. Epub 2003 Dec 23.
8
How bacteria assemble flagella.
Annu Rev Microbiol. 2003;57:77-100. doi: 10.1146/annurev.micro.57.030502.090832. Epub 2003 May 1.
9
Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation.
J Bacteriol. 2003 Mar;185(5):1624-33. doi: 10.1128/JB.185.5.1624-1633.2003.
10
Variable symmetry in Salmonella typhimurium flagellar motors.
Biophys J. 2003 Jan;84(1):571-7. doi: 10.1016/S0006-3495(03)74877-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验