Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, P.R. China.
mBio. 2023 Apr 25;14(2):e0018923. doi: 10.1128/mbio.00189-23. Epub 2023 Mar 22.
The cytoplasmic ring (C-ring) of the bacterial flagellar motor controls the motor rotation direction, thereby controlling bacterial run-and-tumble behavior. The C-ring has been shown to undergo adaptive remodeling in response to changes in motor directional bias. However, the stoichiometry and arrangement of the C-ring is still unclear due to contradiction between the results from fluorescence studies and cryo-electron microscopy (cryo-EM) structural analysis. Here, by using the copy number of FliG molecules (34) in the C-ring as a reference, we precisely measured the copy numbers of FliM molecules in motors rotating exclusively counterclockwise (CCW) and clockwise (CW). We surprisingly found that there are on average 45 and 58 FliM molecules in CW and CCW rotating motors, respectively, which are much higher than previous estimates. Our results suggested a new mechanism of C-ring adaptation, that is, extra FliM molecules could be bound to the primary C-ring with probability depending on the motor rotational direction. We further confirmed that all of the FliM molecules in the C-ring function in chemotaxis signaling transduction because all of them could be bound by the chemotactic response regulator CheY-P. Our measurements provided new insights into the structure and arrangement of the flagellar switch. The bacterial flagellar switch can undergo adaptive remodeling in response to changes in motor rotation direction, thereby shifting its operating point to match the output of the chemotaxis signaling pathway. However, it remains unclear how the flagellar switch accomplishes this adaptive remodeling. Here, via precise fluorescence studies, we measured the absolute copy numbers of the critical component in the switch for motors rotating counterclockwise and clockwise, obtaining much larger numbers than previous relative estimates. Our results suggested a new mechanism of adaptive remodeling of the flagellar switch and provided new insights for updating the conformation spread model of the switch.
细菌鞭毛马达的细胞质环 (C 环) 控制着马达的旋转方向,从而控制着细菌的跑动和翻转行为。已经表明,C 环会根据马达定向偏置的变化进行适应性重塑。然而,由于荧光研究和低温电子显微镜 (cryo-EM) 结构分析结果之间的矛盾,C 环的计量和排列仍然不清楚。在这里,我们通过将 C 环中 FliG 分子的拷贝数 (34) 作为参考,精确测量了仅逆时针 (CCW) 和顺时针 (CW) 旋转的马达中 FliM 分子的拷贝数。我们惊讶地发现,CW 和 CCW 旋转马达中平均分别有 45 和 58 个 FliM 分子,这比以前的估计要高得多。我们的结果提出了 C 环适应的一种新机制,即额外的 FliM 分子可以以依赖于马达旋转方向的概率结合到主 C 环上。我们进一步证实,C 环中的所有 FliM 分子都可以在趋化感应信号转导中发挥作用,因为所有的 FliM 分子都可以被趋化感应调节蛋白 CheY-P 结合。我们的测量结果为鞭毛开关的结构和排列提供了新的见解。细菌鞭毛开关可以根据马达旋转方向的变化进行适应性重塑,从而改变其工作点以匹配趋化感应信号通路的输出。然而,鞭毛开关如何实现这种自适应重塑仍然不清楚。在这里,我们通过精确的荧光研究,测量了逆时针和顺时针旋转的马达中开关关键组件的绝对拷贝数,得到的数字比以前的相对估计值要大得多。我们的结果提出了一种新的鞭毛开关适应性重塑机制,并为更新开关构象扩展模型提供了新的见解。