Brûlet P, McConnell H M
Proc Natl Acad Sci U S A. 1975 Apr;72(4):1451-5. doi: 10.1073/pnas.72.4.1451.
A number of electron and nuclear magnetic resonance studies of model membranes, and biological membranes, involve time-dependent magnetic interactions diffusion relative to one another. The two-dimensional character of this motion can have a special, large effect on magnetic resonance line shapes, and relaxation rates, because of the long-time tail of the correlation function for magnetic interactions modulated by this motion. Equations are given for the specific case in which nuclear relaxation rates are enhanced due to dipolar interactions with membrane-bound spin labels. An experimental study of spin-label-enhanced 13-C nuclear relaxation in unsonicated dispersions of phosphatidylcholine is accounted for with this theory, together with the previously reported lipid diffusion constant of D congruent to 2 times 10- minus 8 cm-2/sec. Our analysis of previously reported 1-H and 13-C nuclear relaxation rates in small phospholipid vesicles produced by sonication suggests that the rate of lateral diffusion in these small vesicles may be significantly larger than 10- minus 8 cm-2/sec.
一些针对模型膜和生物膜的电子与核磁共振研究,涉及到随时间变化的磁相互作用以及它们之间的相对扩散。这种运动的二维特性会对磁共振线形和弛豫率产生特殊的、显著的影响,这是因为由该运动调制的磁相互作用的相关函数具有长时间拖尾效应。文中给出了具体情况的方程,即由于与膜结合的自旋标记的偶极相互作用导致核弛豫率增强。利用该理论以及先前报道的磷脂酰胆碱未超声分散体中脂质扩散常数(D)约为(2×10^{-8} cm^{2}/s),对自旋标记增强的(^{13}C)核弛豫在磷脂酰胆碱未超声分散体中的实验研究进行了解释。我们对先前报道的超声处理产生的小磷脂囊泡中(^{1}H)和(^{13}C)核弛豫率的分析表明,这些小囊泡中的横向扩散速率可能显著大于(10^{-8} cm^{2}/s)。