Nanayakkara Nuwan D, Samarabandu Jagath, Fenster Aaron
Department of Electrical and Computer Engineering, University of Western Ontario, London, Ontario N6A5B9, Canada.
Phys Med Biol. 2006 Apr 7;51(7):1831-48. doi: 10.1088/0031-9155/51/7/014. Epub 2006 Mar 21.
Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this paper, we present a semi-automatic discrete dynamic contour (DDC) model based image segmentation algorithm, which effectively combines a multi-resolution model refinement procedure together with the domain knowledge of the image class. The segmentation begins on a low-resolution image by defining a closed DDC model by the user. This contour model is then deformed progressively towards higher resolution images. We use a combination of a domain knowledge based fuzzy inference system (FIS) and a set of adaptive region based operators to enhance the edges of interest and to govern the model refinement using a DDC model. The automatic vertex relocation process, embedded into the algorithm, relocates deviated contour points back onto the actual prostate boundary, eliminating the need of user interaction after initialization. The accuracy of the prostate boundary produced by the proposed algorithm was evaluated by comparing it with a manually outlined contour by an expert observer. We used this algorithm to segment the prostate boundary in 114 2D transrectal ultrasound (TRUS) images of six patients scheduled for brachytherapy. The mean distance between the contours produced by the proposed algorithm and the manual outlines was 2.70 +/- 0.51 pixels (0.54 +/- 0.10 mm). We also showed that the algorithm is insensitive to variations of the initial model and parameter values, thus increasing the accuracy and reproducibility of the resulting boundaries in the presence of noise and artefacts.
前列腺位置和体积的估计对于确定超声引导下近距离放射治疗(一种常见的前列腺癌治疗方法)的剂量计划至关重要。然而,手动分割困难、耗时且容易出现差异。在本文中,我们提出了一种基于半自动离散动态轮廓(DDC)模型的图像分割算法,该算法有效地将多分辨率模型细化过程与图像类别的领域知识结合在一起。分割从低分辨率图像开始,由用户定义一个封闭的DDC模型。然后,这个轮廓模型朝着更高分辨率的图像逐步变形。我们使用基于领域知识的模糊推理系统(FIS)和一组基于自适应区域的算子相结合的方法来增强感兴趣的边缘,并使用DDC模型来控制模型细化。嵌入到算法中的自动顶点重新定位过程将偏离的轮廓点重新定位到实际的前列腺边界上,从而在初始化后无需用户交互。通过将所提出算法生成的前列腺边界与专家观察者手动勾勒的轮廓进行比较,评估了该算法的准确性。我们使用此算法对六名计划进行近距离放射治疗的患者的114张二维经直肠超声(TRUS)图像中的前列腺边界进行分割。所提出算法生成的轮廓与手动轮廓之间的平均距离为2.70 +/- 0.51像素(0.54 +/- 0.10毫米)。我们还表明,该算法对初始模型和参数值的变化不敏感,从而在存在噪声和伪影的情况下提高了所得边界的准确性和可重复性。