Malsch U, Thieke C, Huber P E, Bendl R
Department of Medical Physics in Radiation Therapy, Deutsches Krebsforschungszentrum, DKFZ, Im Neuenheimer Feld 280, 69210 Heidelberg, Germany.
Phys Med Biol. 2006 Oct 7;51(19):4789-806. doi: 10.1088/0031-9155/51/19/005. Epub 2006 Sep 8.
Image registration has many medical applications in diagnosis, therapy planning and therapy. Especially for time-adaptive radiotherapy, an efficient and accurate elastic registration of images acquired for treatment planning, and at the time of the actual treatment, is highly desirable. Therefore, we developed a fully automatic and fast block matching algorithm which identifies a set of anatomical landmarks in a 3D CT dataset and relocates them in another CT dataset by maximization of local correlation coefficients in the frequency domain. To transform the complete dataset, a smooth interpolation between the landmarks is calculated by modified thin-plate splines with local impact. The concept of the algorithm allows separate processing of image discontinuities like temporally changing air cavities in the intestinal track or rectum. The result is a fully transformed 3D planning dataset (planning CT as well as delineations of tumour and organs at risk) to a verification CT, allowing evaluation and, if necessary, changes of the treatment plan based on the current patient anatomy without time-consuming manual re-contouring. Typically the total calculation time is less than 5 min, which allows the use of the registration tool between acquiring the verification images and delivering the dose fraction for online corrections. We present verifications of the algorithm for five different patient datasets with different tumour locations (prostate, paraspinal and head-and-neck) by comparing the results with manually selected landmarks, visual assessment and consistency testing. It turns out that the mean error of the registration is better than the voxel resolution (2 x 2 x 3 mm(3)). In conclusion, we present an algorithm for fully automatic elastic image registration that is precise and fast enough for online corrections in an adaptive fractionated radiation treatment course.
图像配准在诊断、治疗计划制定和治疗等方面有许多医学应用。特别是对于时间自适应放射治疗,非常需要对用于治疗计划的图像以及实际治疗时获取的图像进行高效且准确的弹性配准。因此,我们开发了一种全自动快速块匹配算法,该算法在三维CT数据集中识别一组解剖标志点,并通过在频域中最大化局部相关系数将它们重新定位到另一个CT数据集中。为了变换整个数据集,通过具有局部影响的改进薄板样条计算标志点之间的平滑插值。该算法的概念允许对图像中的不连续部分进行单独处理,如肠道或直肠中随时间变化的气腔。结果是将一个完整的三维计划数据集(计划CT以及肿瘤和危及器官的轮廓)完全变换到验证CT,从而能够基于当前患者的解剖结构评估治疗计划,并在必要时进行更改,而无需耗时的手动重新勾勒轮廓。通常,总计算时间不到5分钟,这使得可以在获取验证图像和输送剂量分次之间使用配准工具进行在线校正。我们通过将结果与手动选择的标志点、视觉评估和一致性测试进行比较,对五个不同肿瘤位置(前列腺、脊柱旁和头颈部)的不同患者数据集的算法进行了验证。结果表明,配准的平均误差优于体素分辨率(2×2×3立方毫米)。总之,我们提出了一种用于全自动弹性图像配准的算法,该算法在自适应分次放射治疗过程中精确且快速,足以进行在线校正。