IEEE Trans Med Imaging. 2015 Apr;34(4):950-61. doi: 10.1109/TMI.2014.2371823. Epub 2014 Dec 2.
Low-dose-rate brachytherapy is a radiation treatment method for localized prostate cancer. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate in order to devise a plan to deliver sufficient radiation dose to the cancerous tissue. Brachytherapy planning involves delineation of contours in these images, which closely follow the prostate boundary, i.e., clinical target volume. This process is currently performed either manually or semi-automatically, which requires user interaction for landmark initialization. In this paper, we propose a multi-atlas fusion framework to automatically delineate the clinical target volume in ultrasound images. A dataset of a priori segmented ultrasound images, i.e., atlases, is registered to a target image. We introduce a pairwise atlas agreement factor that combines an image-similarity metric and similarity between a priori segmented contours. This factor is used in an atlas selection algorithm to prune the dataset before combining the atlas contours to produce a consensus segmentation. We evaluate the proposed segmentation approach on a set of 280 transrectal prostate volume studies. The proposed method produces segmentation results that are within the range of observer variability when compared to a semi-automatic segmentation technique that is routinely used in our cancer clinic.
低剂量率近距离放射治疗是一种治疗局限性前列腺癌的放射治疗方法。这种治疗程序的标准护理方法是获取前列腺的经直肠超声图像,以便设计一个方案,将足够的辐射剂量输送到癌组织。近距离治疗计划包括在这些图像中描绘轮廓,这些轮廓紧密跟随前列腺边界,即临床靶区。目前,这个过程要么手动进行,要么半自动进行,这需要用户交互进行地标初始化。在本文中,我们提出了一种多图谱融合框架,用于自动勾画超声图像中的临床靶区。一个先验分割超声图像的数据集,即图谱,被注册到目标图像上。我们引入了一种成对的图谱一致性因子,它结合了图像相似性度量和先验分割轮廓之间的相似性。该因子用于图谱选择算法中,在组合图谱轮廓以产生共识分割之前,对数据集进行修剪。我们在一组 280 个经直肠前列腺体积研究中评估了所提出的分割方法。与我们癌症临床中常规使用的半自动分割技术相比,所提出的方法产生的分割结果在观察者变异性范围内。