Suppr超能文献

硫有效性对植物氨基酸生物合成完整性的影响。

Effect of sulfur availability on the integrity of amino acid biosynthesis in plants.

作者信息

Nikiforova V J, Bielecka M, Gakière B, Krueger S, Rinder J, Kempa S, Morcuende R, Scheible W-R, Hesse H, Hoefgen R

机构信息

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.

出版信息

Amino Acids. 2006 Mar;30(2):173-83. doi: 10.1007/s00726-005-0251-4. Epub 2006 Mar 24.

Abstract

Amino acid levels in plants are regulated by a complex interplay of regulatory circuits at the level of enzyme activities and gene expression. Despite the diversity of precursors involved in amino acid biosynthesis as providing the carbon backbones, the amino groups and, for the amino acids methionine and cysteine, the sulfhydryl group and despite the involvement of amino acids as substrates in various downstream metabolic processes, the plant usually manages to provide relatively constant levels of all amino acids. Here we collate data on how amino acid homeostasis is shifted upon depletion of one of the major biosynthetic constituents, i.e., sulfur. Arabidopsis thaliana seedlings exposed to sulfate starvation respond with a set of adaptation processes to achieve a new balance of amino acid metabolism. First, metabolites containing reduced sulfur (cysteine, glutathione, S-adenosylmethionine) are reduced leading to a number of downstream effects. Second, the relative excess accumulation of N over S triggers processes to dump nitrogen in asparagine, glutamine and further N-rich compounds like ureides. Third, the depletion of glutathione affects the redox and stress response system of the glutathione-ascorbate cycle. Thus, biosynthesis of aromatic compounds is triggered to compensate for this loss, leading to an increased flux and accumulation of aromatic amino acids, especially tryptophan. Despite sulfate starvation, the homeostasis is kept, though shifted to a new state. This adaptation process keeps the plant viable even under an adverse nutritional status.

摘要

植物中的氨基酸水平受酶活性和基因表达层面的调控回路复杂相互作用的调节。尽管参与氨基酸生物合成的前体多样,它们提供了碳骨架、氨基,对于甲硫氨酸和半胱氨酸而言还提供了巯基,并且尽管氨基酸作为底物参与各种下游代谢过程,但植物通常能使所有氨基酸的水平保持相对恒定。在此,我们整理了关于当一种主要生物合成成分(即硫)缺失时氨基酸稳态如何变化的数据。暴露于硫酸盐饥饿条件下的拟南芥幼苗会通过一系列适应过程来实现氨基酸代谢的新平衡。首先,含还原态硫的代谢物(半胱氨酸、谷胱甘肽、S-腺苷甲硫氨酸)减少,导致一系列下游效应。其次,氮相对于硫的相对过量积累触发了将氮排入天冬酰胺、谷氨酰胺以及进一步排入富含氮的化合物(如脲类)的过程。第三,谷胱甘肽的消耗影响了谷胱甘肽-抗坏血酸循环的氧化还原和应激反应系统。因此,芳香族化合物的生物合成被触发以补偿这种损失,导致芳香族氨基酸的通量和积累增加,尤其是色氨酸。尽管处于硫酸盐饥饿状态,但稳态得以维持,不过转变到了一种新状态。这种适应过程使植物即使在不利的营养状况下也能存活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验