Yang Mingfeng, Lei Ming, Yordanov Boyan, Huo Shuanghong
J Phys Chem B. 2006 Mar 30;110(12):5829-33. doi: 10.1021/jp0570420.
Transthyretin (TTR) is one of the known 20 or so human proteins that form fibrils in vivo, which is a hallmark of amyloid diseases. Recently, molecular dynamics simulations using ENCAD force field have revealed that under low pH conditions, the peptide planes of several amyloidogenic proteins can flip in one direction to form an alpha-pleated structure which may be a common conformational transition in the fibril formation. We performed molecular dynamics simulations with AMBER force fields on a recently engineered double mutant TTR, which was shown experimentally to form amyloid fibrils even under close to physiological conditions. Our simulations have demonstrated that peptide-plane flipping can occur even under neutral pH and room temperature for this amyloidogenic TTR variant. Unlike previously reported peptide-plane flipping of TTR using ENCAD force field, we have found two-way flipping using AMBER force field. We propose a new mechanism of amyloid formation based on the two-way flipping, which gives a better explanation of various experimental and computational results. In principle, the residual dipolar and hydrogen-bond scalar coupling techniques can be applied to the wild-type TTR and the variant to study the peptide-plane flipping of amyloidogenic proteins.
转甲状腺素蛋白(TTR)是已知的约20种能在体内形成纤维的人类蛋白质之一,这是淀粉样疾病的一个标志。最近,使用ENCAD力场的分子动力学模拟表明,在低pH条件下,几种淀粉样蛋白的肽平面可以向一个方向翻转,形成α-折叠结构,这可能是纤维形成过程中常见的构象转变。我们使用AMBER力场对最近设计的双突变TTR进行了分子动力学模拟,实验表明该双突变TTR即使在接近生理条件下也能形成淀粉样纤维。我们的模拟表明,对于这种淀粉样TTR变体,即使在中性pH和室温下也会发生肽平面翻转。与之前使用ENCAD力场报道的TTR肽平面翻转不同,我们使用AMBER力场发现了双向翻转。我们基于双向翻转提出了一种新的淀粉样形成机制,该机制能更好地解释各种实验和计算结果。原则上,残余偶极和氢键标量耦合技术可应用于野生型TTR和变体,以研究淀粉样蛋白的肽平面翻转。