Ataman-Onal Yasemin, Munier Séverine, Ganée Arnaud, Terrat Céline, Durand Pierre-Yves, Battail Nicole, Martinon Frédéric, Le Grand Roger, Charles Marie-Hélène, Delair Thierry, Verrier Bernard
FRE2736 CNRS-bioMérieux, IFR128 BioSciences Lyon-Gerland, Tour CERVI, 21, Avenue Tony Garnier, F-69365 Lyon 07, France.
J Control Release. 2006 May 15;112(2):175-85. doi: 10.1016/j.jconrel.2006.02.006. Epub 2006 Mar 6.
Microparticles and nanoparticles prepared with poly(D,L-lactide-co-glycolide) (PLGA) or poly(D,L-lactide) (PLA) polymers represent a promising method for in vivo delivery of encapsulated peptide, protein or DNA antigens. However, one major issue that limits the potential of these delivery systems is the instability or the degradation of the entrapped antigen. Charged microparticles carrying surface adsorbed antigen were developed to resolve this problem and appear more suitable for vaccine applications. We describe here new anionic PLA nanoparticles obtained by the dialysis method that are absolutely surfactant-free, which makes them more appropriate for use in humans. The potency of this delivery system as a vaccine carrier was tested in various animal models using HIV-1 p24 protein. p24-coated PLA nanoparticles (p24/PLA) induced high antibody titres (>10(6)) in mice, rabbits and macaques. Moreover, p24/PLA nanoparticles elicited strong CTL responses and a Th1-biased cytokine release (IFNgamma, IL-2) in mice. p24 protein seemed to generate a more Th1-oriented response when administered coated onto the surface of PLA nanoparticles than adjuvanted with Freund's adjuvant. Most importantly, the ability of p24/PLA particles to induce Th1 responses was also confirmed in the macaque model, since high levels of IFNgamma-producing CD4+ T cells and CD8+ T cells could be detected by the ELISPOT assay. This protein delivery system confirms the potential of charged nanoparticles in the field of vaccine development.
用聚(D,L-丙交酯-共-乙交酯)(PLGA)或聚(D,L-丙交酯)(PLA)聚合物制备的微粒和纳米颗粒代表了一种用于体内递送包封的肽、蛋白质或DNA抗原的有前景的方法。然而,限制这些递送系统潜力的一个主要问题是包封抗原的不稳定性或降解。为了解决这个问题,开发了携带表面吸附抗原的带电微粒,并且它们似乎更适合疫苗应用。我们在此描述了通过透析法获得的新型阴离子PLA纳米颗粒,其完全不含表面活性剂,这使得它们更适合用于人类。使用HIV-1 p24蛋白在各种动物模型中测试了这种递送系统作为疫苗载体的效力。p24包被的PLA纳米颗粒(p24/PLA)在小鼠、兔子和猕猴中诱导了高抗体滴度(>10^6)。此外,p24/PLA纳米颗粒在小鼠中引发了强烈的CTL反应和偏向Th1的细胞因子释放(IFNγ、IL-2)。与用弗氏佐剂佐剂化相比,p24蛋白包被在PLA纳米颗粒表面给药时似乎产生了更偏向Th1的反应。最重要的是,在猕猴模型中也证实了p24/PLA颗粒诱导Th1反应的能力,因为通过ELISPOT测定可以检测到高水平的产生IFNγ的CD4+ T细胞和CD8+ T细胞。这种蛋白质递送系统证实了带电纳米颗粒在疫苗开发领域的潜力。