Suppr超能文献

基于贝叶斯张量正则化的改进纤维束成像技术

Improved fiber tractography with Bayesian tensor regularization.

作者信息

Lu Yonggang, Aldroubi Akram, Gore John C, Anderson Adam W, Ding Zhaohua

机构信息

Vanderbilt University Institute of Imaging Science, USA.

出版信息

Neuroimage. 2006 Jul 1;31(3):1061-74. doi: 10.1016/j.neuroimage.2006.01.043. Epub 2006 Mar 24.

Abstract

Diffusion tensor tractography suffers from the effects of noise and partial volume averaging (PVA). For reliable reconstruction of fiber pathways, tracking algorithms that are robust to these artifacts are called for. To meet this need, the present study establishes a novel Bayesian regularization framework for fiber tracking that takes into account the effects of noise and PVA, thereby improving tracking accuracy and precision. With this framework, the propagation of a fiber path follows an optimal vector determined by Bayes decision rule; the probability functions involved are modeled on the basis of multivariate normal distributions of diffusion tensor elements, which allows the optimal solution with maximum a posteriori probability to be derived analytically. Parameters for the probability functions are estimated from the uncertainty of tensor elements and the variance among tensors within an oriented sampling volume weighted by fractional anisotropy. Experiments with Monte Carlo simulations, synthetic, and in vivo human diffusion tensor data demonstrate that this specialized scheme enhances the immunity of fiber tracking to noise and PVA, and hence enables fibers to be more faithfully reconstructed.

摘要

扩散张量纤维束成像受到噪声和部分容积平均(PVA)的影响。为了可靠地重建纤维路径,需要对这些伪影具有鲁棒性的追踪算法。为满足这一需求,本研究建立了一种用于纤维追踪的新型贝叶斯正则化框架,该框架考虑了噪声和PVA的影响,从而提高了追踪的准确性和精确性。在此框架下,纤维路径的传播遵循由贝叶斯决策规则确定的最优向量;所涉及的概率函数基于扩散张量元素的多元正态分布进行建模,这使得能够通过解析得出具有最大后验概率的最优解。概率函数的参数根据张量元素的不确定性以及在由分数各向异性加权的定向采样体积内张量之间的方差来估计。通过蒙特卡罗模拟、合成数据以及体内人体扩散张量数据进行的实验表明,这种专门的方案增强了纤维追踪对噪声和PVA的抗性,从而能够更忠实地重建纤维。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验