Suppr超能文献

学习图匹配。

Learning graph matching.

作者信息

Caetano Tibério S, McAuley Julian J, Cheng Li, Le Quoc V, Smola Alex J

机构信息

Statistical Machine Learning Group, NICTA, Locked Bag 8001, Canberra, ACT 2601, Australia.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1048-58. doi: 10.1109/TPAMI.2009.28.

Abstract

As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

摘要

作为模式识别中的一个基本问题,图匹配在从计算机视觉到计算生物学等各个领域都有应用。在图匹配中,模式被建模为图,模式识别相当于找到不同图的节点之间的对应关系。这个问题的许多公式通常都可以转化为二次分配问题,其中目标函数中的线性项编码节点兼容性,二次项编码边兼容性。由于二次分配问题是NP难问题,因此该主题的主要研究重点是设计高效算法来近似求解二次分配问题。在本文中,我们将注意力转向一个不同的问题:如何估计兼容性函数,以使所得图匹配问题的解决方案与人类手动提供的预期解决方案最佳匹配。我们提出了一种学习图匹配的方法:训练示例是图对,“标签”是它们之间的匹配。我们的实验结果表明,学习可以显著提高标准图匹配算法的性能。特别是,我们发现采用这种学习方案的简单线性分配优于具有双随机归一化的渐进分配,后者是一种先进的二次分配松弛算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验