Fukuda Takaichi, Kosaka Toshio, Singer Wolf, Galuske Ralf A W
Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
J Neurosci. 2006 Mar 29;26(13):3434-43. doi: 10.1523/JNEUROSCI.4076-05.2006.
Gap junctions are common between cortical GABAergic interneurons but little is known about their quantitative distribution along dendritic profiles. Here, we provide direct morphological evidence that parvalbumin-containing GABAergic neurons in layer 2/3 of the cat visual cortex form dense and far-ranging networks through dendritic gap junctions. Gap junction-coupled networks of parvalbumin neurons were visualized using connexin36 immunohistochemistry and confocal laser-scanning microscopy (CLSM). The direct correspondence of connexin36-immunopositve puncta and gap junctions was confirmed by examining the same structures in both CLSM and electron microscopy. Single parvalbumin neurons with large somata (> or =200 microm2) formed 60.3 +/- 12.2 (mean +/- SD) gap junctions with other cells whereby these contacts were not restricted to proximal dendrites but occurred at distances of up to 380 microm from the soma. In a Sholl analysis of large-type parvalbumin neurons, 21.9 +/- 7.9 gap junctions were within 50 microm of the soma, 21.7 +/- 7.6 gap junctions in a segment between 50 and 100 microm, 11.2 +/- 4.7 junctions between 100 and 150 microm, and 5.6 +/- 3.6 junctions were in more distal segments. Serially interconnected neurons could be traced laterally in a boundless manner through multiple gap junctions. Comparison to the orientation-preference columns revealed that parvalbumin-immunoreactive cells distribute randomly whereby their large dendritic fields overlap considerably and cover different orientation columns. It is proposed that this dense and homogeneous electrical coupling of interneurons supports the precise synchronization of neuronal populations with differing feature preferences thereby providing a temporal frame for the generation of distributed representations.
缝隙连接在皮质GABA能中间神经元之间很常见,但关于它们沿树突轮廓的定量分布却知之甚少。在这里,我们提供了直接的形态学证据,表明猫视觉皮层第2/3层中含小白蛋白的GABA能神经元通过树突缝隙连接形成密集且广泛的网络。使用连接蛋白36免疫组织化学和共聚焦激光扫描显微镜(CLSM)观察了小白蛋白神经元的缝隙连接耦合网络。通过在CLSM和电子显微镜下检查相同结构,证实了连接蛋白36免疫阳性斑点与缝隙连接的直接对应关系。具有大细胞体(≥200平方微米)的单个小白蛋白神经元与其他细胞形成60.3±12.2(平均值±标准差)个缝隙连接,这些连接并不局限于近端树突,而是发生在距细胞体最远380微米的距离处。在对大型小白蛋白神经元的肖尔分析中,21.9±7.9个缝隙连接在细胞体50微米范围内,50至100微米段有21.7±7.6个缝隙连接,100至150微米之间有11.2±4.7个连接,更远端段有5.6±3.6个连接。通过多个缝隙连接,可以以无界的方式横向追踪串联互连的神经元。与方向偏好柱的比较表明,小白蛋白免疫反应性细胞随机分布,其大的树突场有相当大的重叠,并覆盖不同的方向柱。有人提出,这种中间神经元的密集且均匀的电耦合支持具有不同特征偏好的神经元群体的精确同步,从而为生成分布式表征提供一个时间框架。