Shibata Takashi, Hattori Noriaki, Nishijo Hisao, Takahashi Tsutomu, Higuchi Yuko, Kuroda Satoshi, Takakusaki Kaoru
Department of Neurosurgery, Toyama University Hospital, Toyama, Japan.
Department of Neurosurgery, Toyama Nishi General Hospital, Toyama, Japan.
Front Cell Neurosci. 2025 Jan 6;18:1525816. doi: 10.3389/fncel.2024.1525816. eCollection 2024.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum. Chemical synchronization involves the diffuse release of neurotransmitters like dopamine and acetylcholine, causing transmission delays of several milliseconds. Electromagnetic synchronization encompasses action potentials, electrical gap junctions, and ephaptic coupling. Electrical gap junctions enable rapid synchronization within cortical GABAergic networks, while ephaptic coupling allows structures like axon bundles to synchronize through extracellular electromagnetic fields, surpassing the speed of chemical processes. Quantum synchronization is hypothesized to involve ion coherence during ion channel passage and the entanglement of photons within the myelin sheath. Unlike the finite-time synchronization seen in chemical and electromagnetic processes, quantum entanglement provides instantaneous non-local coherence states. Neurons might have evolved from slower chemical diffusion to rapid temporal synchronization, with ion passage through gap junctions within cortical GABAergic networks potentially facilitating both fast gamma band synchronization and quantum coherence. This mini-review compiles literature on these three synchronization types, offering new insights into the physiological mechanisms that address the binding problem in neuron assemblies.
大脑中表达的基因的进化明显慢于其他组织中表达的基因,这种现象可能是由于高水平的功能限制。其中一个这样的限制可能是神经元组件对信息的整合,从而增强环境适应性。本研究通过三种同步类型探索神经元中信息整合的生理机制:化学同步、电磁同步和量子同步。化学同步涉及多巴胺和乙酰胆碱等神经递质的扩散释放,导致几毫秒的传输延迟。电磁同步包括动作电位、电突触和ephaptic耦合。电突触能够在皮质GABA能网络内实现快速同步,而ephaptic耦合则使轴突束等结构能够通过细胞外电磁场实现同步,其速度超过化学过程。据推测,量子同步涉及离子通道通过期间的离子相干以及髓鞘鞘内光子的纠缠。与化学和电磁过程中看到的有限时间同步不同,量子纠缠提供瞬时非局部相干态。神经元可能已经从较慢的化学扩散进化到快速的时间同步,皮质GABA能网络内离子通过缝隙连接的过程可能同时促进快速伽马波段同步和量子相干。这篇小型综述汇编了关于这三种同步类型的文献,为解决神经元组件中结合问题的生理机制提供了新的见解。