Astman Nadav, Gutnick Michael J, Fleidervish Ilya A
Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
J Neurosci. 2006 Mar 29;26(13):3465-73. doi: 10.1523/JNEUROSCI.4907-05.2006.
In addition to the well described fast-inactivating component of the Na+ current [transient Na+ current (INaT)], neocortical neurons also exhibit a low-voltage-activated, slowly inactivating "persistent" Na+ current (INaP), which plays a role in determining neuronal excitability and synaptic integration. We investigated the Na+ channels responsible for INaP in layer 5 pyramidal cells using cell-attached and whole-cell recordings in neocortical slices. In simultaneous cell-attached and whole-cell somatic recordings, no persistent Na+ channel activity was detected at potentials at which whole-cell INaP operates. Detailed kinetic analysis of late Na+ channel activity in cell-attached patches at 36 degrees C revealed that somatic Na+ channels do not demonstrate "modal gating" behavior and that the probability of single late openings is extremely low (<1.4 x 10(-4) or <0.02% of maximal open probability of INaT). Ensemble averages of these currents did not reveal a sustained component whose amplitude and voltage dependence could account for INaP as seen in whole-cell recordings. Local application of TTX to the axon blocked somatically recorded INaP, whereas somatic and dendritic application had little or no effect. Finally, simultaneous current-clamp recordings from soma and apical dendrite revealed that Na+ plateau potentials originate closer to the axon. Our data indicate that the primary source of INaP is in the spike initiation zone in the proximal axon. The focal axonal presence of regenerative subthreshold conductance with voltage and time dependence optimal to manipulate integration of synaptic input, spike threshold, and the pattern of repetitive firing provides the layer 5 pyramidal neuron with a mechanism for dynamic control of its gain.
除了已被充分描述的钠电流快速失活成分[瞬态钠电流(INaT)]外,新皮层神经元还表现出一种低电压激活、缓慢失活的“持续性”钠电流(INaP),它在决定神经元兴奋性和突触整合中发挥作用。我们使用新皮层切片中的细胞贴附式和全细胞记录方法,研究了负责第5层锥体细胞中INaP的钠通道。在同时进行的细胞贴附式和全细胞体记录中,在全细胞INaP起作用的电位下未检测到持续性钠通道活性。在36℃下对细胞贴附膜片上晚期钠通道活性进行的详细动力学分析表明,体钠通道不表现出“模式门控”行为,单个晚期开放的概率极低(<1.4×10⁻⁴,或<INaT最大开放概率的0.02%)。这些电流的总体平均值未显示出一个持续成分,其幅度和电压依赖性可解释全细胞记录中所见的INaP。将TTX局部应用于轴突可阻断体记录的INaP,而将其应用于体细胞和树突则几乎没有影响或没有影响。最后,同时从体细胞和顶端树突进行电流钳记录表明,钠平台电位起源于更靠近轴突的位置。我们的数据表明,INaP的主要来源是近端轴突中的峰起始区。再生性阈下电导在轴突局部的存在,其电压和时间依赖性最适合于操纵突触输入的整合、峰阈值和重复放电模式,为第5层锥体神经元提供了一种动态控制其增益的机制。