Suppr超能文献

新皮层锥体神经元中的电压门控钠通道表现出科尔 - 穆尔激活动力学。

Voltage-Gated Sodium Channels in Neocortical Pyramidal Neurons Display Cole-Moore Activation Kinetics.

作者信息

Almog Mara, Barkai Tal, Lampert Angelika, Korngreen Alon

机构信息

The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.

出版信息

Front Cell Neurosci. 2018 Jun 26;12:187. doi: 10.3389/fncel.2018.00187. eCollection 2018.

Abstract

Exploring the properties of action potentials is a crucial step toward a better understanding of the computational properties of single neurons and neural networks. The voltage-gated sodium channel is a key player in action potential generation. A comprehensive grasp of the gating mechanism of this channel can shed light on the biophysics of action potential generation. However, most models of voltage-gated sodium channels assume a concerted Hodgkin and Huxley kinetic gating scheme. However, it is not clear if Hodgkin and Huxley models are suitable for use in action potential simulations of central nervous system neurons. To resolve this, we investigated the activation kinetics of voltage-gated sodium channels. Here we performed high resolution voltage-clamp experiments from nucleated patches extracted from the soma of layer 5 (L5) cortical pyramidal neurons in rat brain slices. We show that the gating mechanism does not follow traditional Hodgkin and Huxley kinetics and that much of the channel voltage-dependence is probably due to rapid closed-closed transitions that lead to substantial onset latency reminiscent of the Cole-Moore effect observed in voltage-gated potassium conductances. Thus, the classical Hodgkin and Huxley description of sodium channel kinetics may be unsuitable for modeling the physiological role of this channel. Furthermore, our results reconcile between apparently contradicting studies sodium channel activation. Our findings may have key implications for the role of sodium channels in synaptic integration and action potential generation.

摘要

探索动作电位的特性是更好地理解单个神经元和神经网络计算特性的关键一步。电压门控钠通道是动作电位产生的关键因素。全面掌握该通道的门控机制有助于揭示动作电位产生的生物物理学原理。然而,大多数电压门控钠通道模型都假定采用霍奇金和赫胥黎的协同动力学门控方案。然而,尚不清楚霍奇金和赫胥黎模型是否适用于中枢神经系统神经元的动作电位模拟。为了解决这个问题,我们研究了电压门控钠通道的激活动力学。在此,我们对从大鼠脑片第5层(L5)皮质锥体神经元胞体提取的有核膜片进行了高分辨率电压钳实验。我们发现,门控机制并不遵循传统的霍奇金和赫胥黎动力学,而且通道的大部分电压依赖性可能是由于快速的关闭-关闭转换,这种转换导致了明显的起始延迟,类似于在电压门控钾电导中观察到的科尔-摩尔效应。因此,经典的霍奇金和赫胥黎对钠通道动力学的描述可能不适用于模拟该通道的生理作用。此外,我们的结果调和了关于钠通道激活的明显相互矛盾的研究。我们的发现可能对钠通道在突触整合和动作电位产生中的作用具有关键意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验