Suppr超能文献

黑腹果蝇四种主要小热休克蛋白的伴侣样活性差异。

Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster.

作者信息

Morrow Geneviève, Heikkila John J, Tanguay Robert M

机构信息

Laboratoire de génétique cellulaire et développementale, Dép. de Médecine, CREFSIP, Pav. C.E.-Marchand, Université Laval, Québec, QC GI K 7P4, Canada.

出版信息

Cell Stress Chaperones. 2006 Spring;11(1):51-60. doi: 10.1379/csc-166.1.

Abstract

The Drosophila melanogaster family of small heat shock proteins (sHsps) is composed of 4 main members (Hsp22, Hsp23, Hsp26, and Hsp27) that display distinct intracellular localization and specific developmental patterns of expression in the absence of stress. In an attempt to determine their function, we have examined whether these 4 proteins have chaperone-like activity using various chaperone assays. Heat-induced aggregation of citrate synthase was decreased from 100 to 17 arbitrary units in the presence of Hsp22 and Hsp27 at a 1:1 molar ratio of sHsp to citrate synthase. A 5 M excess of Hsp23 and Hsp26 was required to obtain the same efficiency with either citrate synthase or luciferase as substrate. In an in vitro refolding assay with reticulocyte lysate, more than 50% of luciferase activity was recovered when heat denaturation was performed in the presence of Hsp22, 40% with Hsp27, and 30% with Hsp23 or Hsp26. These differences in luciferase reactivation efficiency seemed related to the ability of sHsps to bind their substrate at 42 degrees C, as revealed by sedimentation analysis of sHsp and luciferase on sucrose gradients. Therefore, the 4 main sHsps of Drosophila share the ability to prevent heat-induced protein aggregation and are able to maintain proteins in a refoldable state, although with different efficiencies. The functional reasons for their distinctive cell-specific pattern of expression could reflect the existence of defined substrates for each sHsp within the different intracellular compartments.

摘要

果蝇小热休克蛋白(sHsps)家族由4个主要成员(Hsp22、Hsp23、Hsp26和Hsp27)组成,在无应激条件下,它们表现出不同的细胞内定位和特定的发育表达模式。为了确定它们的功能,我们使用各种伴侣蛋白检测方法,研究了这4种蛋白质是否具有伴侣蛋白样活性。在sHsp与柠檬酸合酶摩尔比为1:1的情况下,Hsp22和Hsp27存在时,热诱导的柠檬酸合酶聚集从100个任意单位降至17个任意单位。需要5 M过量的Hsp23和Hsp26才能以柠檬酸合酶或荧光素酶为底物获得相同的效率。在网织红细胞裂解物的体外重折叠检测中,当在Hsp22存在下进行热变性时,超过50%的荧光素酶活性得以恢复,Hsp27存在时为40%,Hsp23或Hsp26存在时为30%。荧光素酶再激活效率的这些差异似乎与sHsps在42℃结合其底物的能力有关,这通过蔗糖梯度上sHsp和荧光素酶的沉降分析得以揭示。因此,果蝇的4种主要sHsps具有共同的能力,即防止热诱导蛋白质聚集,并能够使蛋白质保持在可重折叠状态,尽管效率不同。它们独特的细胞特异性表达模式的功能原因可能反映了不同细胞内区室中每种sHsp都有特定的底物。

相似文献

2
Hsp26: a temperature-regulated chaperone.
EMBO J. 1999 Dec 1;18(23):6744-51. doi: 10.1093/emboj/18.23.6744.
3
The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
J Biol Chem. 2006 Dec 29;281(52):39943-52. doi: 10.1074/jbc.M607677200. Epub 2006 Nov 7.
4
Structural and functional properties of proteins interacting with small heat shock proteins.
Cell Stress Chaperones. 2020 Jul;25(4):629-637. doi: 10.1007/s12192-020-01097-x. Epub 2020 Apr 20.
5
Tissue-specific posttranslational modification of the small heat shock protein HSP27 in Drosophila.
Exp Cell Res. 1996 Feb 25;223(1):1-8. doi: 10.1006/excr.1996.0052.
7
Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
Comp Biochem Physiol A Mol Integr Physiol. 2004 Oct;139(2):175-82. doi: 10.1016/j.cbpb.2004.08.006.
8
Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays.
Biochem Biophys Res Commun. 2004 Dec 10;325(2):401-7. doi: 10.1016/j.bbrc.2004.10.043.
9
Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity.
Biochem J. 2004 Jul 15;381(Pt 2):379-87. doi: 10.1042/BJ20031958.

引用本文的文献

3
Structural and functional properties of proteins interacting with small heat shock proteins.
Cell Stress Chaperones. 2020 Jul;25(4):629-637. doi: 10.1007/s12192-020-01097-x. Epub 2020 Apr 20.
4
Transcriptional analysis of insect extreme freeze tolerance.
Proc Biol Sci. 2019 Oct 23;286(1913):20192019. doi: 10.1098/rspb.2019.2019.
5
Organelle aging: Lessons from model organisms.
J Genet Genomics. 2019 Apr 20;46(4):171-185. doi: 10.1016/j.jgg.2019.03.011. Epub 2019 Apr 25.
6
Stress tolerance in diapausing embryos of Artemia franciscana is dependent on heat shock factor 1 (Hsf1).
PLoS One. 2018 Jul 6;13(7):e0200153. doi: 10.1371/journal.pone.0200153. eCollection 2018.
8
Maternal loading of a small heat shock protein increases embryo thermal tolerance in .
J Exp Biol. 2017 Dec 1;220(Pt 23):4492-4501. doi: 10.1242/jeb.164848. Epub 2017 Nov 2.
9
Identification and expression analysis of multiple small heat shock protein genes in spruce budworm, Choristoneura fumiferana (L.).
Cell Stress Chaperones. 2018 Jan;23(1):141-154. doi: 10.1007/s12192-017-0832-7. Epub 2017 Jul 28.
10
Effect of N-terminal region of nuclear Drosophila melanogaster small heat shock protein DmHsp27 on function and quaternary structure.
PLoS One. 2017 May 16;12(5):e0177821. doi: 10.1371/journal.pone.0177821. eCollection 2017.

本文引用的文献

1
Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila.
J Biol Chem. 2004 Oct 15;279(42):43382-5. doi: 10.1074/jbc.C400357200. Epub 2004 Aug 25.
2
Multiple-stress analysis for isolation of Drosophila longevity genes.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12610-5. doi: 10.1073/pnas.0404648101. Epub 2004 Aug 12.
3
Chaperone activity of cytosolic small heat shock proteins from wheat.
Eur J Biochem. 2004 Apr;271(8):1426-36. doi: 10.1111/j.1432-1033.2004.04033.x.
4
Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity.
Biochem J. 2004 Jul 15;381(Pt 2):379-87. doi: 10.1042/BJ20031958.
5
Heat shock proteins and aging in Drosophila melanogaster.
Semin Cell Dev Biol. 2003 Oct;14(5):291-9. doi: 10.1016/j.semcdb.2003.09.023.
6
Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae.
EMBO J. 2004 Feb 11;23(3):638-49. doi: 10.1038/sj.emboj.7600080. Epub 2004 Jan 29.
10
Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation.
Mol Microbiol. 2003 Oct;50(2):585-95. doi: 10.1046/j.1365-2958.2003.03710.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验