Suppr超能文献

Atrial natriuretic peptide inhibition of calcium ionophore A23187-stimulated aldosterone secretion in rat adrenal glomerulosa cells.

作者信息

Lotshaw D P, Franco-Saenz R, Mulrow P J

机构信息

Department of Medicine, Medical College of Ohio, Toledo 43699.

出版信息

Endocrinology. 1991 Nov;129(5):2305-10. doi: 10.1210/endo-129-5-2305.

Abstract

The effect of atrial natriuretic peptide (ANP) on calcium ionophore A23187-stimulated aldosterone secretion was investigated using collagenase-dispersed rat adrenal glomerulosa cell suspensions. A23187 treatment induced a dose-dependent stimulation of aldosterone secretion, exhibiting an EC50 of approximately 75 nM. In agreement with the presumed action of A23187 as a Ca2+ ionophore, stimulation was dependent on the extracellular Ca2+ concentration, being completely inhibited in nominally Ca(2+)-free medium. In such Ca(2+)-free medium, stimulation of aldosterone secretion by bath applied 25-hydroxycholesterol was not inhibited, indicating that cells and biosynthetic pathway enzymes were not inhibited by low extracellular Ca2+ levels. A23187-induced aldosterone secretion was also inhibited by more than 90% when cells were simultaneously treated with ANP. Maximal ANP inhibition of A23187-stimulated aldosterone secretion was not overcome by concentrations of A23187 up to 10 microM or by increasing the extracellular Ca2+ concentration from 1.25 to 5 mM in the presence of A23187 and ANP. Addition of A23187 to ACTH-, angiotensin II-, or K(+)-stimulated glomerulosa cells did not overcome ANP-induced inhibition of aldosterone secretion stimulated by these secretagogues. In contrast to ANP inhibition of Ca(2+)-dependent A23187 stimulation of aldosterone secretion, ANP inhibition of dBcAMP-stimulated aldosterone secretion was readily overcome by increasing the dBcAMP concentration. These results indicated that ANP selectively and noncompetitively inhibited an intracellular step necessary for Ca(2+)-dependent stimulation of the early pathway of aldosterone biosynthesis in rat adrenal glomerulosa cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验