Donoho David L, Elad Michael
Departments of Statistics and Computer Science, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2197-202. doi: 10.1073/pnas.0437847100. Epub 2003 Feb 21.
Given a dictionary D = {d(k)} of vectors d(k), we seek to represent a signal S as a linear combination S = summation operator(k) gamma(k)d(k), with scalar coefficients gamma(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the l(1) norm of the coefficients gamma. In this article, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We sketch three applications: separating linear features from planar ones in 3D data, noncooperative multiuser encoding, and identification of over-complete independent component models.
给定一个由向量d(k)组成的字典D = {d(k)},我们试图将信号S表示为线性组合S = ∑(k)γ(k)d(k),其中标量系数为γ(k)。特别地,我们追求尽可能稀疏的表示。一般来说,这需要一个组合优化过程。先前的工作考虑了一种特殊情况,即D是一个由恰好两个正交基组成的超完备系统,并表明,在两个基相互不相干的条件下,且假设S具有足够稀疏的表示时,这种表示是唯一的,并且可以通过求解一个凸优化问题来找到:具体来说,就是最小化系数γ的l(1)范数。在本文中,我们在更一般的情况下得到了类似的结果,其中字典D可以由两个或多个基、框架甚至结构较少的系统产生。我们概述了三个应用:从3D数据中的平面特征中分离线性特征、非合作多用户编码以及超完备独立分量模型的识别。