Suppr超能文献

一种基于近端算子的用于稀疏表示的过完备字典学习快速算法。

A Fast Algorithm for Learning Overcomplete Dictionary for Sparse Representation Based on Proximal Operators.

作者信息

Li Zhenni, Ding Shuxue, Li Yujie

机构信息

Graduate School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu-shi, 965-8580, Japan

Faculty of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu-shi, 965-8580, Japan

出版信息

Neural Comput. 2015 Sep;27(9):1951-82. doi: 10.1162/NECO_a_00763. Epub 2015 Jul 10.

Abstract

We present a fast, efficient algorithm for learning an overcomplete dictionary for sparse representation of signals. The whole problem is considered as a minimization of the approximation error function with a coherence penalty for the dictionary atoms and with the sparsity regularization of the coefficient matrix. Because the problem is nonconvex and nonsmooth, this minimization problem cannot be solved efficiently by an ordinary optimization method. We propose a decomposition scheme and an alternating optimization that can turn the problem into a set of minimizations of piecewise quadratic and univariate subproblems, each of which is a single variable vector problem, of either one dictionary atom or one coefficient vector. Although the subproblems are still nonsmooth, remarkably they become much simpler so that we can find a closed-form solution by introducing a proximal operator. This leads to an efficient algorithm for sparse representation. To our knowledge, applying the proximal operator to the problem with an incoherence term and obtaining the optimal dictionary atoms in closed form with a proximal operator technique have not previously been studied. The main advantages of the proposed algorithm are that, as suggested by our analysis and simulation study, it has lower computational complexity and a higher convergence rate than state-of-the-art algorithms. In addition, for real applications, it shows good performance and significant reductions in computational time.

摘要

我们提出了一种快速、高效的算法,用于学习用于信号稀疏表示的超完备字典。整个问题被视为一个近似误差函数的最小化问题,该函数对字典原子具有相干性惩罚,对系数矩阵具有稀疏性正则化。由于该问题是非凸且非光滑的,普通优化方法无法有效地解决这个最小化问题。我们提出了一种分解方案和交替优化方法,可将该问题转化为一组分段二次和单变量子问题的最小化问题,每个子问题都是关于一个字典原子或一个系数向量的单变量向量问题。尽管子问题仍然是非光滑的,但它们显著地变得更加简单,以至于我们可以通过引入近端算子找到闭式解。这就产生了一种用于稀疏表示的高效算法。据我们所知,以前尚未研究过将近端算子应用于带有不相干性项的问题,并使用近端算子技术以闭式形式获得最优字典原子。我们提出的算法的主要优点是,正如我们的分析和仿真研究所表明的,它比现有算法具有更低的计算复杂度和更高的收敛速度。此外,对于实际应用,它表现出良好的性能,并且显著减少了计算时间。

相似文献

1
A Fast Algorithm for Learning Overcomplete Dictionary for Sparse Representation Based on Proximal Operators.
Neural Comput. 2015 Sep;27(9):1951-82. doi: 10.1162/NECO_a_00763. Epub 2015 Jul 10.
2
Direct-Optimization-Based DC Dictionary Learning With the MCP Regularizer.
IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3568-3579. doi: 10.1109/TNNLS.2021.3114400. Epub 2023 Jul 6.
3
Distributed dictionary learning for sparse representation in sensor networks.
IEEE Trans Image Process. 2014 Jun;23(6):2528-41. doi: 10.1109/TIP.2014.2316373. Epub 2014 Apr 10.
4
Joint and Direct Optimization for Dictionary Learning in Convolutional Sparse Representation.
IEEE Trans Neural Netw Learn Syst. 2020 Feb;31(2):559-573. doi: 10.1109/TNNLS.2019.2906074. Epub 2019 Apr 19.
5
Alternating proximal regularized dictionary learning.
Neural Comput. 2014 Dec;26(12):2855-95. doi: 10.1162/NECO_a_00672. Epub 2014 Sep 23.
6
Denoising Poisson phaseless measurements via orthogonal dictionary learning.
Opt Express. 2018 Aug 6;26(16):19773-19796. doi: 10.1364/OE.26.019773.
7
Discriminative Structured Dictionary Learning on Grassmann Manifolds and Its Application on Image Restoration.
IEEE Trans Cybern. 2018 Oct;48(10):2875-2886. doi: 10.1109/TCYB.2017.2751585. Epub 2017 Sep 25.
8
Bayesian K-SVD Using Fast Variational Inference.
IEEE Trans Image Process. 2017 Jul;26(7):3344-3359. doi: 10.1109/TIP.2017.2681436. Epub 2017 Mar 10.
9
Manifold optimization-based analysis dictionary learning with an ℓ-norm regularizer.
Neural Netw. 2018 Feb;98:212-222. doi: 10.1016/j.neunet.2017.11.015. Epub 2017 Dec 6.
10
Group-sparse representation with dictionary learning for medical image denoising and fusion.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3450-9. doi: 10.1109/TBME.2012.2217493. Epub 2012 Sep 6.

引用本文的文献

1
Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.
IEEE Trans Comput Imaging. 2017 Dec;3(4):694-709. doi: 10.1109/TCI.2017.2697206. Epub 2017 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验