Suppr超能文献

视觉皮层中节能编码的动力学

Dynamics of energy-efficient coding in visual cortex.

作者信息

Moosavi S Amin, Pastor Antonia, Ornelas Alfredo G, Tring Elaine, Ringach Dario L

机构信息

Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States.

Interdepartmental Neuroscience Program, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States.

出版信息

J Neurophysiol. 2025 Jun 1;133(6):2006-2013. doi: 10.1152/jn.00078.2025. Epub 2025 May 5.

Abstract

Sparse coding enables cortical populations to represent sensory inputs efficiently, yet its temporal dynamics remain poorly understood. Here, we provide direct evidence that stimulus onset initially drives broad cortical activation, transiently reducing sparseness while increasing mutual information. Over time, competitive interactions refine the population response, maintaining high mutual information as activity declines and sparseness increases. Critically, coding efficiency, quantified as the ratio of mutual information to metabolic cost, steadily improves throughout stimulus presentation, revealing an active, time-dependent optimization of sensory representations. The authors show that cortical populations refine sensory representations over time. Initially, broad activation boosts information, but as competition sharpens responses, population sparseness increases while preserving mutual information. This dynamic process steadily improves coding efficiency, revealing an active, time-dependent optimization of sensory representations that balances information and metabolic cost.

摘要

稀疏编码使皮层神经元群体能够有效地表征感觉输入,但其时间动态仍知之甚少。在这里,我们提供了直接证据,表明刺激开始时最初会驱动广泛的皮层激活,短暂地降低稀疏性,同时增加互信息。随着时间的推移,竞争性相互作用优化了群体反应,在活动下降和稀疏性增加的同时保持了高互信息。至关重要的是,编码效率(以互信息与代谢成本的比率来量化)在整个刺激呈现过程中稳步提高,揭示了感觉表征的一种主动的、时间依赖性的优化。作者表明,皮层神经元群体随时间优化感觉表征。最初,广泛的激活增加了信息,但随着竞争使反应更加尖锐,群体稀疏性增加,同时保留了互信息。这个动态过程稳步提高了编码效率,揭示了感觉表征的一种主动的、时间依赖性的优化,这种优化平衡了信息和代谢成本。

相似文献

1
Dynamics of energy-efficient coding in visual cortex.
J Neurophysiol. 2025 Jun 1;133(6):2006-2013. doi: 10.1152/jn.00078.2025. Epub 2025 May 5.
2
Temporal dynamics of energy-efficient coding in mouse primary visual cortex.
bioRxiv. 2024 Dec 20:2024.12.17.628997. doi: 10.1101/2024.12.17.628997.
4
Parvalbumin neurons and cortical coding of dynamic stimuli: a network model.
J Neurophysiol. 2025 Jul 1;134(1):53-66. doi: 10.1152/jn.00283.2024. Epub 2025 May 13.
5
Sensory population activity reveals downstream confidence computations in the primate visual system.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2426441122. doi: 10.1073/pnas.2426441122. Epub 2025 Jun 25.
6
Stabilized Supralinear Network Model of Responses to Surround Stimuli in Primary Visual Cortex.
eNeuro. 2025 May 20;12(5). doi: 10.1523/ENEURO.0459-24.2025. Print 2025 May.
7
Unsupervised learning of temporal regularities in visual cortical populations.
Nat Commun. 2025 Jul 1;16(1):5614. doi: 10.1038/s41467-025-60731-3.
9
Temporal coding carries more stable cortical visual representations than firing rate over time.
bioRxiv. 2025 May 13:2025.05.13.652528. doi: 10.1101/2025.05.13.652528.
10
Transitions in dynamical regime and neural mode underlie perceptual decision-making.
bioRxiv. 2025 Apr 7:2023.10.15.562427. doi: 10.1101/2023.10.15.562427.

本文引用的文献

1
Predictive coding is a consequence of energy efficiency in recurrent neural networks.
Patterns (N Y). 2022 Nov 23;3(12):100639. doi: 10.1016/j.patter.2022.100639. eCollection 2022 Dec 9.
2
Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions.
Front Comput Neurosci. 2022 Jul 4;16:929348. doi: 10.3389/fncom.2022.929348. eCollection 2022.
3
Coarse-to-fine processing drives the efficient coding of natural scenes in mouse visual cortex.
Cell Rep. 2022 Mar 29;38(13):110606. doi: 10.1016/j.celrep.2022.110606.
4
A recurrent circuit implements normalization, simulating the dynamics of V1 activity.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22494-22505. doi: 10.1073/pnas.2005417117. Epub 2020 Aug 25.
5
Population code in mouse V1 facilitates readout of natural scenes through increased sparseness.
Nat Neurosci. 2014 Jun;17(6):851-7. doi: 10.1038/nn.3707. Epub 2014 Apr 20.
6
A fast and simple population code for orientation in primate V1.
J Neurosci. 2012 Aug 1;32(31):10618-26. doi: 10.1523/JNEUROSCI.1335-12.2012.
7
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.
9
Sparse coding via thresholding and local competition in neural circuits.
Neural Comput. 2008 Oct;20(10):2526-63. doi: 10.1162/neco.2008.03-07-486.
10
Pattern separation in the dentate gyrus and CA3 of the hippocampus.
Science. 2007 Feb 16;315(5814):961-6. doi: 10.1126/science.1135801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验