Basten C J, Moody M E
Program in Genetics and Cell Biology, Washington State University, Pullman 99164-4234.
J Math Biol. 1991;29(8):743-61. doi: 10.1007/BF00160190.
We have formulated a very general mathematical model to analyze the evolution of transposable genetic elements in prokaryotic populations. Transposable genetic elements are DNA sequences able to replicate and insert copies of themselves at new locations in the genome. This work characterizes the equilibrium distribution of copy number under the influence of copy number-dependent selection, transposition and deletion. Our principal results concern the equilibrium distribution of copy number in response to various selective regimes. For particular transposition patterns (e.g., unregulated transposition or copy number-dependent transposition), equilibrium distributions are calculated numerically for a variety of specific selection patterns. Selection is quantified through specification of the expected number of offspring for individuals of each type, which is generally a non-increasing function of copy number, in accord with the usual evolutionary speculations.
我们已经构建了一个非常通用的数学模型来分析原核生物群体中转座遗传元件的进化。转座遗传元件是能够复制自身并将拷贝插入基因组新位置的DNA序列。这项工作描述了在拷贝数依赖的选择、转座和缺失影响下拷贝数的平衡分布。我们的主要结果涉及响应各种选择机制时拷贝数的平衡分布。对于特定的转座模式(例如,无调控的转座或拷贝数依赖的转座),针对各种特定的选择模式通过数值计算得出平衡分布。选择是通过指定每种类型个体的预期后代数量来量化的,这通常是拷贝数的非增函数,符合通常的进化推测。