Zhou Hui-Zhong, Swanson Raymond A, Simonis Ursula, Ma Xiaokui, Cecchini Gary, Gray Mary O
Department of Medicine, University of California, San Francisco, California, USA.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H714-23. doi: 10.1152/ajpheart.00823.2005. Epub 2006 Mar 31.
Poly(ADP-ribose) polymerase-1 (PARP-1), the most abundant member of the PARP family, is a nuclear enzyme that catalyzes ADP-ribose transfer from NAD+ to specific acceptor proteins in response to DNA damage. Excessive PARP-1 activation is an important cause of infarction and contractile dysfunction in heart tissue during interruptions of blood flow. The mechanisms by which PARP-1 inhibition and disruption dramatically improve metabolic recovery and reduce oxidative stress during cardiac reperfusion have not been fully explored. We developed a mouse heart experimental protocol to test the hypothesis that mitochondrial respiratory complex I is a downstream mediator of beneficial effects of PARP-1 inhibition or disruption. Pharmacological inhibition of PARP-1 activity produced no deterioration of hemodynamic function in C57BL/6 mouse hearts. Hearts from PARP-1 knockout mice also exhibited normal baseline contractility. Prolonged ischemia-reperfusion produced a selective defect in complex I function distal to the NADH dehydrogenase component. PARP-1 inhibition and PARP-1 gene disruption conferred equivalent protection against mitochondrial complex I injury and were strongly associated with improvement in myocardial energetics, contractility, and tissue viability. Interestingly, ischemic preconditioning abolished cardioprotection stimulated by PARP-1 gene disruption. Treatment with the antioxidant N-(2-mercaptopropionyl)-glycine or xanthine oxidase inhibitor allopurinol restored the function of preconditioned PARP-1 knockout hearts. This investigation establishes a strong association between PARP-1 hyperactivity and mitochondrial complex I dysfunction in cardiac myocytes. Our findings advance understanding of metabolic regulation in myocardium and identify potential therapeutic targets for prevention and treatment of ischemic heart disease.
聚(ADP - 核糖)聚合酶 -1(PARP -1)是PARP家族中含量最丰富的成员,是一种核酶,可响应DNA损伤催化ADP - 核糖从NAD +转移至特定的受体蛋白。PARP -1过度激活是血流中断期间心脏组织梗死和收缩功能障碍的重要原因。PARP -1抑制和破坏在心脏再灌注期间显著改善代谢恢复并降低氧化应激的机制尚未得到充分探索。我们开发了一种小鼠心脏实验方案,以检验线粒体呼吸复合体I是PARP -1抑制或破坏的有益作用的下游介质这一假设。PARP -1活性的药理学抑制在C57BL / 6小鼠心脏中未导致血流动力学功能恶化。PARP -1基因敲除小鼠的心脏也表现出正常的基线收缩性。长时间的缺血再灌注在NADH脱氢酶成分远端的复合体I功能中产生了选择性缺陷。PARP -1抑制和PARP -1基因破坏对线粒体复合体I损伤具有同等的保护作用,并且与心肌能量代谢、收缩性和组织活力的改善密切相关。有趣的是,缺血预处理消除了PARP -1基因破坏刺激的心脏保护作用。用抗氧化剂N -(2 - 巯基丙酰基)- 甘氨酸或黄嘌呤氧化酶抑制剂别嘌呤醇治疗可恢复预处理的PARP -1基因敲除心脏的功能。本研究确定了心肌细胞中PARP -1过度活跃与线粒体复合体I功能障碍之间的密切关联。我们的研究结果推进了对心肌代谢调节的理解,并确定了预防和治疗缺血性心脏病的潜在治疗靶点。