Barenco Martino, Tomescu Daniela, Brewer Daniel, Callard Robin, Stark Jaroslav, Hubank Michael
Institute of Child Health, University College London, Guilford Street, London WC1N 1EH, UK.
Genome Biol. 2006;7(3):R25. doi: 10.1186/gb-2006-7-3-r25. Epub 2006 Mar 31.
Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network, validating predictions experimentally using small interfering RNA. HVDM can be applied in many systems biology contexts to predict regulation of gene activity quantitatively.
对微阵列数据的充分利用需要隐藏信息,而这些信息无法通过当前的分析方法提取。我们提出了一种新方法,即隐藏变量动态建模(HVDM),它从时间序列微阵列数据中推导转录因子的隐藏概况,并生成预测靶标的排名列表。我们将HVDM应用于p53网络,使用小干扰RNA通过实验验证了预测结果。HVDM可应用于许多系统生物学背景下,以定量预测基因活性的调控。