Mizisin A P, Calcutt N A
Department of Pathology, School of Medicine, University of California, San Diego, La Jolla 92093.
Metabolism. 1991 Nov;40(11):1207-12. doi: 10.1016/0026-0495(91)90217-k.
Nerve polyol content and (Na+,K+)-adenosine triphosphatase (ATPase) activity of nerve homogenates were studied in a colony of rats fed diets containing either 0%, 10%, 20%, or 40% galactose for 4 months. Nerve water and dulcitol content exhibited dose-dependent increases, whereas nerve myo-inositol content declined with increasing dietary galactose. Homogenate (Na+,K+)-ATPase activity increased with increasing galactose consumption of up to 20% dietary intake and thereafter remained consistently elevated at twice the activity of 0% galactose-fed values. Nerves of rats fed 40% galactose were also examined at the light microscope level and showed evidence of both edema and myelin splitting. These data demonstrate that increased nerve water content, dulcitol accumulation, and myo-inositol depletion parallel the previously reported dose-related increase of endoneurial fluid sodium and chloride in nerves of galactose-fed rats and suggest that elevated nerve homogenate (Na+,K+)-ATPase activity may be related to one or more of these consequences of exaggerated polyol pathway flux.